Тромбоцитарная агрегация. Механизм участия адгезивных молекул и митохондрий

Авторы

  • В.Т. Чещевик (V.T. Cheshchevik) Полесский государственный университет
  • Д.В. Жерносеков (D.D.Zhernossekov) Полесский государственный университет

Аннотация

В статье представлены основные механизмы агрегации тромбоцитов с участием адгезивных молекул, раскрыта регулирующая роль митохондрий при агрегации тромбоцитов и в тромбообразовании. Выявлены основные молекулярные и клеточные мишени терапевтического воздействия при патологическом тромбообразовании. Ключевые слова: тромбоциты, митохондрии, адгезивные молекулы, интегрин, факторы свертывания крови, плазминоген, поры высокой проницаемости. The role of mitochondria and adhesive molecules in the platelet aggregation and the thrombus formation is presented. The membrane permeability transition and integrin α IIb β3 were determined as a key target of treatment in cells at various pathological states associated with the thrombus formation. Keywords: platelets, mitochondria, adhesive molecules, integrin, coagulation factors, plasminogen, membrane permeability transition pores.

Библиографические ссылки

Shattil, S.J. The final steps of integrin activation: the end game / S.J. Shattil, C. Kim, M.H. Ginsberg // Nature Reviews Molecular Cell Biology. − 2010. − Vol. 11. − P. 288–300.

Tadokoro, S. Talin binding to integrin tails: a final common step in integrin activation / S. Tadokoro // Science. − 2003. − Vol. 302. − P. 103–106.

Bonnefoy, A. Thrombospondin–1 in Von Willebrand Factor Function / A. Bonnefoy, M.F. Hoylaerts // Current Drug Targets. − 2008. − Vol. 9. − P. 822–832.

Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation / A.Reheman [et al.] // J. Thromb. Haemost. − 2005. − Vol. 3, № 5. − P. 875–883.

Xu, J. Fibronectin and Other Adhesive Glycoproteins / J. Xu, D. Mosher ; The Extracellular Matrix: an Overview: Springer Berlin Heidelberg. − Berlin, 2011. − P. 41–75.

Novel aspects of platelet aggregation / Y.M. Roka–Moya [et al.] // Biopolym. cell. − 2014. − Vol. 30, № 1. − P. 10–15.

Cho, J. Role of fibronectin assembly in platelet thrombus formation / J. Cho, D.F. Mosher // J.Thromb. Haemost. − 2006. − Vol. 4. − P. 1461–1469.

Concentration of Fibronectin in Plasma of Tumor–bearing Mice and Synthesis by Ehrlich Ascites Tumor Cells / L. Zardi [et al.] // Cancer Res. − 1979. − Vol. 39, № 9. P. 3774–3779.

Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor / C.Francavilla [et al.] // J. Cell Sci. − 2007. Vol. 120, № 24. − P. 4388–4394.

Fibrinogen and von willebrand factor–independent platelet aggregation in vitro and in vivo / H.Yang [et al.] // J. Thromb. Haemost. − 2006. − Vol. 4, № 10. − P. 2230–2237.

Plasma fibronectin supports hemostasis and regulates thrombosis / Y. Wang [et al.] // J. Clin.Invest. − 2014. − Vol. 124, № 10. − P. 4281–4293.

Vitronectin Inhibits Blood Platelet Aggregation / M. Roger [et al.] // Platelets. – 1993. – Vol. 4, № 4. – P. 225–229.

Syrovets, T. Novel aspects and new roles for the serine protease plasmin / T. Syrovets, T. Simmet // Cell Mol. Life Sci. – 2004. – Vol. 61, № 7(8). – P. 873–885.

Юсова, Е.И. Превращение Glu–плазминогена в Lys–плазминоген на поверхности тромбоцитов / Е.И. Юсова, О.В. Савчук, В.Н. Рыбачук // Современные проблемы биохимии: сб. науч. ст. / НАН РБ, ГП "Институт биохимии биологически активных соединений"; [редкол.: Л.И. Надольник (отв. ред.) и др.]. – Гродно, 2016. – С. 105–111.

Hajjar, K.A. Endothelial cell–mediated conversion of Glu–plasminogen to Lys–plasminogen. Further evidence for assembly of the fibrinolytic system on the endothelial cell surface / K.A. Hajjar, R.L. Nachman // J. Clin. Invest. – 1988. – Vol. 82, № 5. – P. 1769–1778.

Characterization of plasminogen as an adhesive ligand for integrins Mac–1 and α5β1 / V.K. Lishko [et al.] // Blood. – 2004. – Vol. 104, № 3. – P. 719–726.

Activated human platelets express beta2 integrin / M.M. Philippeaux [et al.] // Eur. J. Haematol. – 1996. – Vol. 56, № 3. – P. 130–137.

Roka–Moya, Y.M. Plasminogen/plasmin influence on platelet aggregation / Y.M. Roka–Moya, D.D. Zhernossekov, T.V.Grinenko // Biopolym. Cell. – 2012. – Vol. 28, № 5. – P. 352–356.

Kakkar, V.V. Intermittent plasminogen–streptokinase treatment of deep vein thrombosis / V.V. Kakkar, M.F. Scully // Haemostasis. – 1988. – Vol. 18, № 1. – P. 127–138.

Platelet dysfunction in type 2 diabetes / A.I. Vinik [et al.] // Diabetes Care. – 2001. – Vol. 24, № 8. – P. 1476–1485.

Platelets release mitochondria serving as substrate for bactericidal group IIA–secreted phospholipase A2 to promote inflammation / L.H. Boudreau [et al.] // Blood. – 2014. – Vol. 124, № 14. – P. 2173–2183.

Zharikov, S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease / S. Zharikov, S. Shiva // Biochem. Soc. Trans. – 2013. – Vol. 41, № 1. – P. 118–123.

Fuel choices by human platelets in human plasma / M. Guppy [et al.] // Eur. J. Biochem. – 1997. – Vol. 244, № 1. – P. 161–167.

Willem, J. Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production, and oxygen uptake during platelet aggregation and Ca2+ secretion / J. Willem, N. Akkerman, H. Holmsen // Blood. – 1981. – Vol. 57, № 5. – P. 956–966.

Verhoeven, A.J. Quantification of energy consumption in platelets during thrombin–induced aggregation and secretion. Tight coupling between platelet responses and the increment in energy consumption / A.J. Verhoeven, M.E. Mommersteeg, J.W. Akkerman // Biochem. J. – 1984. – Vol. 221, № 3. – P. 777–787.

Platelet mitochondrial dysfunction in critically ill patients: comparison between sepsis and cardiogenic shock / A. Protti [et al.] // Crit. Care. –2015. – Vol. 19, № 1. – P. 39.

Mitochondria regulate platelet metamorphosis induced by opsonized zymosan A – activation and long–term commitment to cell death / P. Matarrese et al. // FEBS J. – 2009. – Vol. 276, № 3. – P. 845–856.

Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health / T.R. Figueira [et al.] // Antioxid. Redox Signal. – 2013. – Vol. 18, № 16. – P. 2029–2074.

Superoxide anion and hydroxyl radical release by collagen–induced platelet aggregation–role of arachidonic acid metabolism / D. Caccese [et al.] // Thromb. Haemost. – 2000. – Vol. 83, № 3. – P. 485–490.

Programmed anuclear cell death delimits platelet life span / K.D. Mason [et al.] // Cell. – 2007. – Vol. 128, № 6. – P. 1173–1186.

Vanags, D.M. Alterations in Bcl–2/Bax protein levels in platelets form part of an ionomycin-induced process that resembles apoptosis / D.M. Vanags, S. Orrenius, M. Aguilar–Santelises // Br. J.Haematol. – 1997. – Vol. 99, № 4. – P. 824–831.

Comparison of the relative activities of inducing platelet apoptosis stimulated by various platelet–activating agents / K.H. Lin [et al.] // Platelets. – 2009. – Vol. 20, № 8. – P. 575–581.

Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis / S.M. Jobe [et al.] // Blood. – 2007. – Vol. 111, № 3. – P. 1257–1265.

A Model for the Stoichiometric Regulation of Blood Coagulation / M.F. Hockin [et al.] // J. Biol. Chem. – 2002. – Vol. 277, № 21. – P. 18322–18333.

Hydrogen peroxide is involved in collagen–induced platelet activation / P. Pignatelli [et al.] // Blood. – 1998. – Vol. 91, № 2. – P. 484–490.

The role of mitochondrial permeability transition pore in regulating the shedding of the platelet GPIbα ectodomain / Z. Wang [et al.] // Platelets. – 2014. – Vol. 25, № 5. – P. 373–381.

Cyclophilin D in mitochondrial pathophysiology / V. Giorgio [et al.] // Biochim. Biophys. Acta. – 2010. – Vol. 1797, № 6(7). – P. 1113–1118.

Mitochondrially mediated integrin αiIbβ3 protein inactivation limits thrombus growth / F. Liu [et al.] // J. Biol. Chem. – 2013. – Vol. 288, № 42. – P. 30672–30681.

Role of Mitochondrial Permeability Transition Pore in Coated–Platelet Formation / G. Remenyi [et al.] // Arterioscler. Thromb. Vasc. Biol. – 2004. – Vol. 25, № 2. – P. 467–471.

Involvement of the Na+/H+ exchanger in membrane phosphatidylserine exposure during human platelet activation / R. Bucki [et al.] // Biochim. Biophys. Acta. – 2006. – Vol. 1761, № 2. – P. 195–204.

Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins / J. Llopis [et al.] // Proc. Natl. Acad. Sci. USA. – 1998. – Vol. 95, № 12. – P. 6803–6808.

Controlled shedding of platelet glycoprotein (GP)VI and GPIb–IX–V by ADAM family metalloproteinases / E.E. Gardiner [et al.] // J. Thromb. Haemost. – 2007. – Vol. 5, № 7. – P. 1530–1537.

Du, X. Signaling and regulation of the platelet glycoprotein Ib–IX–V complex / X. Du // Curr. Opin. Hematol. – 2007. – Vol. 14, № 3. – P. 262–269.

ROS–Ca(2+) is associated with mitochondria permeability transition pore involved in surfactin–induced MCF–7 cells apoptosis / X.H. Cao [et al.] // Chem. Biol. Interact. – 2011. – Vol. 190, № 1. – P.16–27.

Mitochondrial calcium and reactive oxygen species regulate agonist–initiated platelet phosphatidylserine exposure / H.J. Choo [et al.] // Arterioscler. Thromb. Vasc. Biol. – 2012. – Vol. 32, № 12. – P. 2946–2955.

Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure / T. Oka [et al.] // Nature. – 2012. – Vol. 485, № 7397. – P. 251–255.

Circulating mitochondrial DAMPs cause inflammatory responses to injury / Q. Zhang [et al.] // Nature. – 2010. – Vol. 464, № 7285. – P. 104–117.

Antiphospholipid antibodies and the risk of recurrence after a first episode of venous thromboembolism: a systematic review / D. Garcia [et al.] // Blood. – 2013. – Vol. 122, № 5. – P. 817–824.

Hyperglycemia potentiates collagen–induced platelet activation through mitochondrial superoxide overproduction / S.I. Yamagishi [et al.] // Diabetes. – 2001. – Vol. 50, № 6. – P. 1491–1494.

Inhibiting platelet–stimulated blood coagulation by inhibition of mitochondrial respiration / C.J.Barile [et al.] // Proc. Natl. Acad. Sci. USA. – 2012. – Vol. 109, № 7. – P. 2539–2543.

Lopez, E.A. Immunophilins and thrombotic disorders / E.A. Lopez, J.C. Rosado, P. Redondo // Curr. Med. Chem. – 2011. – Vol. 18, № 35. – P. 5414–5423

Shattil S.J., Kim C., Ginsberg M.H. The final steps of integrin activation: the end game. Nature Reviews Molecular Cell Biology, 2010, Vol. 11, pp. 288–300.

Tadokoro S. Talin binding to integrin tails: a final common step in integrin activation. Science, 2003, Vol. 302, pp. 103–106.

Bonnefoy A., Hoylaerts M.F. Thrombospondin–1 in Von Willebrand Factor Function. Current Drug Targets, 2008, Vol., pp. 822–832.

Reheman A., Gross P., Yang H., Chen P., Allen D., Leytin V., Freedman J., Ni H. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. Journal of Thrombosis and Haemostasis, 2005, Vol. 3, no. 5, pp. 875–883.

Xu J., Mosher D. Fibronectin and Other Adhesive Glycoproteins. The Extracellular Matrix: an Overview. Springer Berlin Heidelberg. Berlin, 2011, pp. 41–75.

Roka–Moya Y.M., Bilous V.L., Zhernossekov D.D., Grinenko T.V. Novel aspects of platelet aggregation. Biopolymers and cell, 2014, Vol. 30, no. 1, pp. 10–15.

Cho J., Mosher D.F. Role of fibronectin assembly in platelet thrombus formation. Journal of Thrombosis and Haemostasis, 2006, Vol. 4, pp. 1461–1469.

Zardi L., Cecconi C., Barbieri O., Carnemolla B., Picca M., Santi L. Concentration of Fibronectin in Plasma of Tumor–bearing Mice and Synthesis by Ehrlich Ascites Tumor Cells. Cancer Res, 1979, Vol. 39, no. 9, pp. 3774–3779.

Francavilla C., Loeffler S., Piccini D., Kren A., Christofori G., Cavallaro U. Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. Journal of Cell Science, 2007, vol. 120, no. 24, pp. 4388–4394.

Yang H., Reheman A., Chen P., Zhu G., Hynes R.O., Freedman J., Wagner D.D., Ni H. Fibrinogen and von willebrand factor–independent platelet aggregation in vitro and in vivo. Journal of Thrombosis and Haemostasis, 2006, Vol. 4, no. 10, pp. 2230–2237.

Wang Y., Reheman A., Spring C.M., Kalantari J., Marshall A.H., Wolberg A.S., Gross P.L., Weitz J.I., Rand M.L., Mosher D.F., Freedman J., Ni H. Plasma fibronectin supports hemostasis and regulates thrombosis . Journal of Clinical Investigation, 2014, Vol.124, no. 10, pp. 4281–4293.

Roger M., Hogasen K., Solum N.O., Mollnes T.E., Hovig T. Vitronectin Inhibits Blood Platelet Aggregation. Platelets, 1993, Vol. 4, no. 4, pp. 225–229.

Syrovets T., Simmet T. Novel aspects and new roles for the serine protease plasmin . Cellular and Molecular Life Sciences, 2004, Vol. 61, no. 7(8), pp. 873–885.

Iusova E.I., Savchuk O.V., Rybachuk V.N. Prevrashchenie Glu-plazminogena v Lys-plazminogen na poverkhnosti trombotsitov. [Conversion of Glu–plasminogen into Lys–plasminogen on the surface of thrombocytes]. Sovremennye problemy biokhimii [Modern problems of biochemistry]. Eds. L.I. Nadol'nik et al. Grodno, 2016, pp.105–111.

Hajjar K.A., Nachman R.L. Endothelial cell–mediated conversion of Glu–plasminogen to Lys–plasminogen. Further evidence for assembly of the fibrinolytic system on the endothelial cell surface. Journal of Clinical Investigation, 1988, Vol. 82, no. 5, pp. 1769–1778.

Lishko V.K., Novokhatny V.V., Yakubenko V.P., Skomorovska–Prokvolit H.V. Ugarova T.P. Characterization of plasminogen as an adhesive ligand for integrins Mac–1 and α5β1. Blood, 2004, Vol. 104, no. 3, pp. 719–726.

Philippeaux M.M, Vesin C., Tacchini–Cottier F., Piguet P.F. Activated human platelets express beta2 integrin. European Journal of Haematology, 1996, Vol. 56, no. 3, pp. 130–137.

Roka–Moya Y.M., Zhernossekov D.D., Grinenko T.V. Plasminogen/plasmin influence on platelet aggregation. Biopolymers and Cell, 2012, Vol. 28, no. 5, pp. 352–356.

Kakkar V.V., Scully M.F. Intermittent plasminogen–streptokinase treatment of deep vein thrombosis. Haemostasis, 1988, Vol. 18, no. 1, pp. 127–138.

Vinik A.I, Erbas T., Park T.S, Nolan R., Pittenger G.L. Platelet dysfunction in type 2 diabetes. Diabetes Care, 2001, Vol. 24, no. 8, pp. 1476–1485.

Boudreau L.H., Duchez A.C., Cloutier N., Soulet D., Martin N., Bollinger J., Paré A., Rousseau M., Naika G.S., Lévesque T., Laflamme C., Marcoux G., Lambeau G., Farndale R.W., Pouliot M., Hamzeh–Cognasse H., Cognasse F., Garraud O., Nigrovic P.A.8 Guderley H., Lacroix S., Thibault L., Semple J.W., Gelb M.H., Boilard E. Platelets release mitochondria serving as substrate for bactericidal group IIA–secreted phospholipase A2 to promote inflammation. Blood, 2014, Vol. 124, no. 14, pp. 2173–2183.

Zharikov S., Shiva S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochemical Society Transactions, 2013, Vol. 41, no. 1, pp. 118–123.

Guppy M., Abas L., Neylon C., Whisson M.E., Whitham S., Pethick D.W., Niu X. Fuel choices by human platelets in human plasma . European Journal of Biochemistry, 1997, Vol. 244, no. 1,pp. 161–167.

Willem J., Akkerman N., Holmsen H. Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production, and oxygen uptake during platelet aggregation and Ca2+secretion. Blood, 1981, Vol. 57, no. 5, pp. 956–966.

Verhoeven A.J., Mommersteeg M.E., Akkerman J.W. Quantification of energy consumption in platelets during thrombin–induced aggregation and secretion. Tight coupling between platelet responses and the increment in energy consumption. Biochemical Journal, 1984, Vol. 221, no. 3, pp.777–787.

Protti A., Fortunato F., Artoni A., Lecchi A., Motta G., Mistraletti G, Novembrino C., Comi G.P., Gattinoni L. Platelet mitochondrial dysfunction in critically ill patients: comparison between sepsis and

cardiogenic shock. Critical Care, 2015, Vol. 19, no. 1, pp. 39.

Matarrese P., Straface E., Palumbo G., Anselmi M., Gambardella L., Ascione B., Del Principe D., Malorni W. Mitochondria regulate platelet metamorphosis induced by opsonized zymosan A – activation and long–term commitment to cell death. FEBS Journal, 2009, Vol. 276, no. 3, pp. 845–856.

Figueira T.R., Barros M.H., Camargo A.A., Castilho R.F., Ferreira J.C., Kowaltowski A.J., Sluse F.E., Souza–Pinto N.C., Vercesi A.E. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxidants & Redox Signaling, 2013, Vol. 18, no. 16, pp. 2029–2074.

Caccese D., Praticò D., Ghiselli A., Natoli S., Pignatelli P., Sanguigni V., Iuliano L., Violi F. Superoxide anion and hydroxyl radical release by collagen–induced platelet aggregation–role of arachidonic acid metabolism. Journal of Thrombosis and Haemostasis, 2000, Vol. 83, no. 3, pp. 485–490.

Mason K.D., Carpinelli M.R., Fletcher J.I., Collinge J.E., Hilton A.A., Ellis S., Kelly P.N., Ekert P.G., Metcalf D., Roberts A.W., Huang D.C., Kile B.T. Programmed anuclear cell death delimits platelet life span. Cell, 2007, Vol. 128, no. 6, pp. 1173–1186.

Vanags D.M., Orrenius S., Aguilar–Santelises M. Alterations in Bcl–2/Bax protein levels in platelets form part of an ionomycin–induced process that resembles apoptosis. British Journal of Haematology, 1997, Vol. 99, no. 4, pp. 824–831.

Lin K.H., Chang H.C., Lu W.J., Jayakumar T., Chou H.C., Fong T.H., Hsiao G., Sheu J.R. Comparison of the relative activities of inducing platelet apoptosis stimulated by various platelet–activating agents. Platelets, 2009, Vol. 20, no. 8, pp. 575–581.

Jobe S.M., Wilson K.M., Leo L., Raimondi A., Molkentin J.D., Lentz S.R., Di Paola J. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood, 2007, Vol. 111, no. 3, pp. 1257–1265.

Hockin M.F., Jones K.C., Everse S.J., Mann K.G. A Model for the Stoichiometric Regulation of Blood Coagulation. The Journal of Biological Chemistry, 2002, Vol. 277, no. 21, pp. 18322–18333.

Pignatelli P., Pulcinelli F.M., Lenti L., Gazzaniga P.P., Violi F. Hydrogen peroxide is involved in collagen–induced platelet activation. Blood, 1998, Vol. 91, no. 2, pp. 484–490.

Wang Z., Cai F., Hu L., Lu Y. The role of mitochondrial permeability transition pore in regulating the shedding of the platelet GPIbα ectodomain. Platelets, 2014, vol. 25, no. 5, pp. 373–381.

Giorgio V., Soriano M.E., Basso E., Bisetto E., Lippe G., Forte M.A., Bernardi P. Cyclophilin D in mitochondrial pathophysiology. Biochimica et Biophysica Acta, 2010, Vol. 1797, no. 6(7), pp. 1113–1118.

Liu F., Gamez G., Myers D.R., Clemmons W., Lam W.A., Jobe S.M. Mitochondrially mediated integrin αiIbβ3 protein inactivation limits thrombus growth/ The Journal of Biological Chemistry, 2013, Vol. 288, no. 42, pp. 30672–30681.

Remenyi G., Szasz R, Friese P, Dale Ge.L. Role of Mitochondrial Permeability Transition Pore in Coated–Platelet Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, Vol. 25, no. 2,

pp. 467–471.

Bucki R., Pastore J.J., Giraud F., Janmey P.A., Sulpice J.C. Involvement of the Na+/H+ exchanger in membrane phosphatidylserine exposure during human platelet activation. Biochimica et Biophysica Acta, 2006, Vol. 1761, no. 2, pp. 195–204.

Llopis J., McCaffery J.M., Miyawaki A., Farquhar M.G., Tsien R.Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proceedings of the National

Academy of Sciences of the United States of America, 1998, Vol. 95, no. 12, pp.6803–6808.

Gardiner E.E., Karunakaran D., Shen Y., Arthur J.F., Andrews R.K., Berndt M.C. Controlled shedding of platelet glycoprotein (GP)VI and GPIb–IX–V by ADAM family metalloproteinases. Journal of Thrombosis and Haemostasis, 2007, Vol. 5, no.7, pp. 1530–1537.

Du X. Signaling and regulation of the platelet glycoprotein Ib–IX–V complex. Current Opinion in Hematology, 2007, Vol. 14, no. 3, pp. 262–269.

Cao X.H., Zhao S.S., Liu D.Y., Wang Z., Niu L.L., Hou L.H., Wang C.L. ROS–Ca(2+) is associated with mitochondria permeability transition pore involved in surfactin–induced MCF–7 cells apoptosis. Chemico–Biological Interactions, 2011, Vol. 190, no. 1, pp. 16–27.

Choo H.J., Saafir T.B., Mkumba L., Wagner M.B., Jobe S.M. Mitochondrial calcium and reactive oxygen species regulate agonist–initiated platelet phosphatidylserine exposure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, Vol. 32, no.12, pp. 2946–2955.

Oka T., Hikoso S., Yamaguchi O., Taneike M., Takeda T., Tamai T., Oyabu J., Murakawa T., Nakayama H., Nishida K., Akira S., Yamamoto A., Komuro I., Otsu K. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature, 2012, Vol. 485, no. 7397, pp. 251–255.

Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 2010, Vol. 464, no. 7285, pp. 104–117

Garcia D., Akl E.A., Carr R., Kearon C. Antiphospholipid antibodies and the risk of recurrence after a first episode of venous thromboembolism: a systematic review. Blood, 2013, Vol. 122, no.5. pp. 817–824.

Yamagishi S.I., Edelstein D., Du X.L., Brownlee M. Hyperglycemia potentiates collagen–induced platelet activation through mitochondrial superoxide overproduction. Diabetes, 2001, Vol. 50, no. 6, pp. 1491–1494.

Barile C.J., Herrmann P.C., Tyvoll D.A., Collman J.P., Decreau R.A., Bull B.S. Inhibiting platelet–stimulated

blood coagulation by inhibition of mitochondrial respiration. Proceedings of the National

Academy of Sciences of the United States of America, 2012, Vol. 109, no. 7, pp. 2539–2543.

Lopez E.A., Rosado J.C., Redondo P. Immunophilins and thrombotic disorders. Current Medicinal

Chemistry, 2011, vol. 18, no. 35, pp. 5414–5423.

Загрузки

Выпуск

Раздел

Биологические науки