ВОЗДЕЛЫВАНИЕ МНОГОКОМПОНЕНТНЫХ БОБОВО-ЗЛАКОВЫХ ТРАВЯНЫХ СМЕСЕЙ НА ЗАГРЯЗНЕННЫХ РАДИОНУКЛИДАМИ ТОРФЯНЫХ ПОЧВАХ БЕЛОРУССКОГО ПОЛЕСЬЯ

А.В. ШАШКО, Л.Н. ШАШКО

Брестский филиал РНИУП «Институт радиологии», г. Пинск, Республика Беларусь

Введение. В современных условиях главная задача сельскохозяйственных предприятий — это производство продукции высокого качества с наименьшими затратами. Применение минеральных удобрений является одним из наиболее важных факторов, определяющих величину и стабильность урожаев сельскохозяйственных культур, способствует сохранению плодородия почв, а на загрязненных радионуклидами землях позволяет управлять процессом формирования качества продукции, значительно уменьшить до безопасных пределов загрязнение ее долгоживущими радионуклидами.

В кормопроизводстве важное значение имеет повышение эффективности возделывания многолетних трав и, в первую очередь, бобовых и бобово-злаковых травосмесей. Смеси бобовых в сочетании со злаковыми травами при укосном использовании имеют ряд существенных преимуществ по сравнению с раздельными посевами этих же растений. Злаковые травы в смесях с бобовыми лучше обеспечиваются азотом за счет симбиоза бобовых трав с клубеньковыми бактериями, которые, усваивая молекулярный азот воздуха, способны в значительной степени экономить минеральный азот удобрений. При расширении площади их посевов и оптимизации ботанического состава возможно мобилизовать для формирования урожая более 100 тыс. т азота воздуха, что равноценно внесению более 200 тыс. т карбамида; при этом существенно уменьшатся расходы на обработку почвы и защиту растений. В республике на основе оптимизации структуры посевов кормовых культур представляется возможным производить в необходимых объемах полноценные и дешевые корма, исключив огромные затраты на импорт белкового сырья. Этот процесс будет сопровождаться уменьшением затратности производства, повышением плодородия почвы и более равномерным распределением объемов сельскохозяйственных работ в течение летне-осеннего периода [1].

Относительно высокие уровни накопления радионуклидов в бобовых культурах ограничивают возможность их использования для производства кормов в зоне радиоактивного загрязнения. В связи с этим, в первые годы после аварии на Чернобыльской АЭС, из полевых севооборотов были выведены люпин, горох, люцерна, клевер, вика и другие бобовые культуры, что негативно отразилось на состоянии кормовой базы животноводства и сбалансированности рационов по элементам питания

Выходом из сложившейся ситуации является производство кормов на основе многокомпонентных бобово-злаковых травосмесей. В эти травосмеси необходимо включать сорта бобовых и злаковых культур, которые в меньшей степени накапливают ¹³⁷Сѕ из почвы. По сравнению с раздельными посевами смеси позволяют иметь более высокую продуктивность производимых кормов. Многочисленными исследованиями ученых и практикой производства установлено, что при наличии в травостое не менее 50 % бобовых компонентов можно получить урожай, эквивалентный внесению 150-180 кг/га действующего вещества азота на злаковом травостое. Благодаря включению в смеси злаковых трав бобового компонента, корм обогащается легкопереваримыми углеводами, улучшается соотношение между концентрацией обменной энергии и протеином. Скармливание кормов из бобово-злаковых смесей способствует улучшению поедаемости и увеличению удоев [2, 3].

Оптимизация доз азотных удобрений с учетом свойств почвы, биологических особенностей растений и экологии ассоциативной азотфиксации может позволить увеличить долю биологического азота в урожае и более экономно расходовать минеральные удобрения.

Брестская область расположена большей частью в пределах Полесской ландшафтной провинции. Область выделяется максимально высокой долей осушенных земель, в 1,3 раза выше средней величины по республике. В структуре пахотных угодий 11 % составляют торфяные почвы, что является наиболее высоким для Беларуси показателем. Основная часть осушенных торфяных мас-

сивов сосредоточена в Лунинецком, Пинском и Столинском районах Брестской области, наиболее пострадавших от чернобыльской катастрофы. Проблема получения растениеводческой продукции, соответствующей допустимым уровням по содержанию ¹³⁷Cs на торфяных почвах остается актуальной до настоящего времени. Основная доля растениеводческой продукции и кормов, не отвечающих требованиям РДУ, производится именно на почвах данного типа.

По результатам многолетних исследований РНИУП «Институт радиологии» известно, что при одинаковой плотности загрязнения с минеральными почвами, переход 137 Cs в растения на торфяных почвах в 4–10 раз выше. Вместе с тем, коэффициенты перехода 137 Cs на торфяных почвах варьируют в очень широком диапазоне.

Исследованиями установлено, что ¹³⁷Cs в почвах, богатых органическим веществом, даже в отдаленный послеаварийный период находится в подвижном состоянии. Это определяется свойством органического вещества и обуславливает высокую доступность радионуклида для растений [4].

Для вышеуказанных почв установлены оптимальные дозы различных видов минеральных удобрений и известковых материалов, позволяющие снизить содержание ¹³⁷Cs в травостое. Вместе с тем, недостаточно изучено возделывание многолетних бобовых трав, особенно нетрадиционных для Белорусского Полесья, на загрязненных радионуклидами торфяных почвах.

Создание на мелиорированных загрязненных радионуклидами торфяных почвах многокомпонентных злаково-бобовых травостоев является одним из основных направлений интенсификации кормовых угодий.

Цель работы: оценить влияние различных доз удобрений при получении качественных кормов на основе многокомпонентных бобово-злаковых травяных смесей на загрязненных радионуклидами торфяных почвах.

Объекты исследований: загрязненные радионуклидами торфяно-глеевые почвы и произрастающие на них многолетние бобово-злаковые травосмеси.

Место проведения исследований: экспериментальные участки в СПК «Новое Полесье» Лунинецкого района Брестской области. Сельхозугодья данного хозяйства представлены широким спектром разновидностей типов почв, плотность загрязнения 137 Cs которых, по данным Брестской ОПИСХ, составляет до 444 кБк/м² (12 Ки/км²).

Методы исследований: При решении поставленных задач использован сравнительный анализ и комплекс общепринятых в агрохимии, почвоведении и сельскохозяйственной радиологии методов полевых и лабораторных исследований, а также математической статистики.

Результаты и их обсуждение. Полевой опыт с многолетними бобово-злаковыми травосмесями был заложен в 2011 году на землях СПК «Новое Полесье» Лунинецкого района Брестской области на торфяно-глеевой почве, подстилаемой с глубины 50 см мелкозернистым песком. Средняя плотность загрязнения почвы опытного участка 137 Cs - 120 кБк/м². Агрохимические показатели корнеобитаемого слоя почвы следующие: рН в КСІ - 4,8; среднее содержание подвижного фосфора - 188 мг/кг почвы; калия - 355 мг; зольность верхнего слоя торфа - 28,4 %, сумма поглощенных оснований - 53,5 ммоль на 100 г почвы, содержание меди - 6,27 мг/кг почвы, бора - 1,45 мг/кг почвы.

Испытывались три вида травосмесей: 1 — тимофеевка луговая (Phleum pratense), кострец безостый (Bromopsis inermis Holub), овсяница луговая (Festuca pratensis), лядвенец рогатый (Lotus corniculatus L.); 2 — тимофеевка луговая (Phleum pratense), кострец безостый (Bromopsis inermis Holub), овсяница луговая (Festuca pratensis), клевер луговой (Trifolium pratense L.), клевер гибридный (Trifolium Hybridum L.); 3 — тимофеевка луговая (Phleum pratense), кострец безостый (Bromopsis inermis Holub), овсяница луговая (Festuca pratensis), галега восточная (Galega orientalis L.).

Посев травосмесей был беспокровный, повторность опытов — 3-кратная, размещение делянок — рендомизированное. Норма высева культур соответствовала технологии их возделывания на торфяных почвах. Сроки отбора растительных и почвенных образцов были приурочены к проведению отчуждения травостоев.

Травы выращивались на фоне фосфорно-калийного питания $P_{60}K_{180}$. Фосфорные удобрения вносились в полной дозе, калийные и азотные удобрения в количестве 75% от полной дозы внесены под первый укос, остальные 25% – под второй укос в соответствии со схемой полевого эксперимента.

Одним из эффективных приемов снижения поступления радионуклидов в растениеводческую продукцию является применение микроэлементов, поскольку недостаточное содержание их по-32 движных форм в почве зачастую является фактором, лимитирующим формирование урожая сельскохозяйственных культур и качества продукции. В нашем опыте торфяные почвы слабо обеспечены кобальтом, обеспеченность бором и медью средняя, что характерно для торфяных почв низинного типа. При недостатке микроэлементов снижается азотофиксация клубеньковыми бактериями. Схемой опыта в вариантах 3, 5 и 6 предусмотрено внесение микроудобрений из расчета Cu-100, Mo-50, B-50 г д.в./га. В период бутонизации бобовых культур (конец второй декады мая) на эти варианты были внесены медный купорос, аммоний молибденовокислый и борная кислота.

Итоговым показателем целесообразности применения определенного комплекса агротехнических и агрохимических мероприятий, направленных на увеличение выхода продукции, является урожайность. Урожайность кормовой массы многолетних трав в значительной степени зависит от метеоусловий и режима питания растений. За годы исследований метеорологические условия вегетационных периодов различались. По степени увлажнения 2012 и 2014 гг. характеризовались хорошим увлажнением – ГТК составили 1,5 и 1,4 соответственно, 2013 г. отличался избыточной увлажненностью – ГТК 2,1. Избыточной увлажненностью отличался май 2014 года – ГТК 2,2.

Данные по урожайности сена за два укоса и прибавки урожая представлены в таблице 1.

Таблица 1 – Урожайность сена многолетних трав за 2 укоса по годам, ц/га, (2012-2014 гг.)

	2012 г. (ц/га)		2013 г. (ц/га)		2014 г. (ц/га)						
Варианты опыта	Урожай-		Урожай-	. ,	Урожай-	Прибав-					
	ность	Прибавка	ность	Прибавка	ность	ка					
Лядвенец рогатый+ овсяница луговая+кострец безостый+тимофеевка луговая											
1.Контроль	71,7	-	51,6	-	49,3	-					
$2.P_{60}K_{180}$	99,9	28,2	74,3	22,7	69,1	19,8					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	104,1	32,4	95,8	44,2	74,0	24,7					
$4.N_{30}P_{60}K_{180}$	136,6	64,9	116,1	64,5	93,3	44,0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145,8	74,1	127,3	75,7	100,8	51,5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145,1	73,4	137,0	85,4	122,2	72,9					
Клевер луговой+ клевер гибридный+ овсяница луговая+кострец безостый+тимофеевка луговая											
1.Контроль	65,1	-	65,0	-	64,6	-					
$2.P_{60}K_{180}$	88,9	23,8	88,4	23,4	78,0	13,4					
$\begin{array}{l} 3.P_{60}K_{180} + Cu_{100} + Mo_{50} \\ + B_{50} \end{array}$	93,9	28,8	101,7	36,7	82,0	17,4					
$4.N_{30}P_{60}K_{180}$	104,5	39,4	138,6	73,6	100,2	35,6					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113,5	48,4	154,5	89,5	105,4	40,8					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128,8	63,7	166,8	101,8	134,3	69,7					
Галега восточная+ клевер гибридный+ овсяница луговая+кострец безостый+тимофеевка луговая											
1.Контроль	81,3	-	63,5	-	47,2	-					
$2.P_{60}K_{180}$	106,9	25,6	91,8	28,3	61,8	14,6					
$\begin{array}{l} 3.P_{60}K_{180} + Cu_{100} + Mo_{50} \\ + B_{50} \end{array}$	116,0	34,7	102,7	39,2	67,9	20,7					
$4.N_{30}P_{60}K_{180}$	117,0	35,7	141,7	78,2	85,3	38,1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	135,5	54,2	149,5	86,0	88,4	41,2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	149,0	67,7	175,7	112,2	108,5	61,3					

Как видно из таблицы 1, во всех вариантах полевого опыта при внесении удобрений происходит увеличение урожайности сена по сравнению с контрольным участком, где удобрения не вносились. Урожайность сена в контрольном варианте (без применения удобрений) составила в среднем за 3 года в опыте с травосмесями злаковые травы с лядвенцем рогатым 57,5 ц/га, с клевером

луговым — 64,9 ц/га, с галегой восточной — 64,0 ц/га. Внесение фосфорных и калийных удобрений в дозах P_{60} и K_{180} способствовало повышению урожайности всех видов травосмесей. Внесение азота в дозе 30 кг д.в. /га на фоне внесения $P_{60}K_{180}$ увеличивало урожайность многолетних травосмесей по сравнению с вариантом без внесения азота на этом же фоне в 2,2-2,5 раза. При внесении азота 60 кг д.в./га прибавка урожая травосмеси с лядвенцем рогатым в среднем за два укоса (2012-2014г.г.) составила 77,2 ц/га, с клеверами — 78,4 ц/га, травосмеси с галегой восточной — 80,4 ц/га. Менее продуктивной за четыре года исследований была травосмесь злаки + лядвенец рогатый. Наиболее эффективными дозами минеральных удобрений при возделывании многокомпонентных бобово-злаковых травосмесей, увеличивающие их продуктивность, являются $N_{30}P_{60}K_{180}$ + Cu_{100} + M_{050} + B_{50} (вариант 5) и $N_{60}P_{60}K_{180}$ + Cu_{100} + M_{050} + M_{50} (вариант 6) для всех видов травосмесей.

Для территорий, загрязненных радионуклидами, в том числе ¹³⁷Сs, важной составляющей качества производимых травяных кормов является снижение их радиоактивности. Поступление ¹³⁷Сs в товарную продукцию может зависеть от многих факторов, в том числе от уровней азотного и калийного питания, метеорологических условий в период вегетации, количества и качества проводимых укосов.

Накопление радионуклидов в сене различалось по годам исследований и по укосам (таблица 2).

Таблица 2 — Удельная активность 137 Cs в сене многолетних бобово-злаковых трав (2012-2014 г.г.), Бк/кг

Варианты опыта	2012 г.		2013 г.		2014 г.					
	1-й укос	2-й укос	1-й укос	2-й укос	1-й укос	2-й укос				
Лядвенец рогатый+ овсяница луговая+кострец безостый+тимофеевка луговая										
1.Контроль	67,8±23,2	87,8±26,2	78,0±23,4	96,1±28,8	39,4±11,8	173,4±52,0				
$2.P_{60}K_{180}$	45,4±14,1	76,1±22,4	56,3±16,9	71,6±21,4	32,1±9,6	89,5±26,8				
$\begin{array}{l} 3.P_{60}K_{180} + Cu_{100} + \\ Mo_{50} + B_{50} \end{array}$	34,3±12,8	48,5±14,8	37,6±11,1	62,4±18,7	26,7±9,7	86,8±28,2				
$4.N_{30}P_{60}K_{180}$	32,4±12,6	44,9±14,7	29,3±9,1	38,8±11,9	27,4±8,3	61,4±18,4				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26,8±9,8	48,9±14,8	16,8±5,2	27,2±8,1	21,7±6,6	40,4±12,1				
$ \begin{array}{c} 6.N_{60}P_{60}K_{180} & + \\ Cu_{100}+Mo_{50}+B_{50} \end{array} $	17,3±5,9	27,9±9,4	20,2±5,9	23,2±6,9	27,9±8,3	54,2±16,2				
Клевер луговой+ клевер гибридный+ овсяница луговая+кострец безостый+тимофеевка луговая										
1.Контроль	70,8±24,5	99,5±31,0	66,7±19,9	138,1±41,2	63,6±18,9	128,0±38,4				
$2.P_{60}K_{180}$	46,6±16,4	74,3±21,4	47,3±14,3	108,8±32,6	33,0±9,9	129,0±38,7				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19,6±8,7	62,3±19,3	32,3±9,6	70,6±21,2	25,2±7,6	138,9±41,7				
$4.N_{30}P_{60}K_{180}$	16,5±6,7	46,7±14,1	21,7±6,4	56,9±17,1	22,4±6,6	118,6±35,5				
$ \begin{array}{c c} 5.N_{30}P_{60}K_{180} & + \\ Cu_{100}+Mo_{50}+B_{50} & \end{array} $	15,8±5,6	54,8±16,3	24,7±7,4	43,2±12,9	26,6±7,9	63,1±17,8				
$ \begin{bmatrix} 6.N_{60}P_{60}K_{180} & + \\ Cu_{100} + Mo_{50} + B_{50} & + \\ \end{bmatrix} $	12,8±4,4	50,6±15,1	14,3±4,3	36,9±11,1	19,4±5,7	47,5±14,1				
Галега восточная+ клевер гибридный+ овсяница луговая+кострец безостый+тимофеевка луговая										
1.Контроль	48,58±17,2	81,8±23,7	66,0±19,4	86,8±26,0	31,09±9,3	242,4±72,7				
$2.P_{60}K_{180}$	33,49±10,9	50,0±15,5	34,3±10,2	77,6±23,2	25,3±6,8	147,5±44,3				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24,08±9,2	42,9±13,6	35,0±10,5	64,8±19,4	19,6±5,8	97,5±29,3				
$4.N_{30}P_{60}K_{180}$	18,0±7,1	31,4±9,8	32,0±9,7	56,0±16,8	16,4±4,9	71,5±21,4				
$\begin{array}{c} 5.N_{30}P_{60}K_{180} & + \\ Cu_{100}+Mo_{50}+B_{50} & \end{array}$	13,9±6,4	29,4±9,3	14,2±4,2	50,4±15,1	16,6±4,9	78,9±23,6				
$\begin{array}{c} 6.N_{60}P_{60}K_{180} \\ Cu_{100} + Mo_{50} + B_{50} \end{array} +$	12,4±5,6	41,6±12,5	15,6±4,5	44,2±13,3	13,8±4,1	53,9±16,1				

Анализ результатов, представленных в таблице 2, показывает, что максимальный переход ¹³⁷Cs из почвы в урожай многолетних трав наблюдался в варианте 1 (контроль) по всем годам испытаний как в первом укосе, так и во втором. В этом варианте накопление ¹³⁷Cs в сене испытуемых травосмесей было в 1,2-2,0 раза выше, чем в вариантах с применением фосфорных и калийных удобрений ($P_{60}K_{180}$). Внесение азотных удобрений и микроудобрений на фоне фосфорно-калийных способствует не только повышению урожайности, но и снижает переход ¹³⁷Cs из почвы в растительную массу. В вариантах с внесением полного минерального удобрения с микроудобрениями $(N_{60}P_{60}K_{180} + Cu_{100} + Mo_{50} + B_{50})$ для травосмеси с лядвенцем рогатым снижение составило до 4,1 раза, травосмеси с клеверами – до $5,\bar{5}$ раз, с галегой восточной – до 5,0 раз. Вместе с тем, как показали исследования, переход ¹³⁷Сѕ из почвы в растения в первом укосе значительно ниже, чем во втором. Наибольшая удельная активность ¹³⁷Cs в сене многолетних бобово-злаковых трав была в 2014 году как в первом, так и во втором укосах по всем видам травосмесей. Это связано, прежде всего, с агрометеорологическими условиями, сложившимися перед первым укосом. Из всех видов испытуемых бобово-злаковых травосмесей наиболее высокий переход 137Cs в урожай сена наблюдался в травосмеси злаковых многолетних трав с клевером луговым и гибридным. Наиболее низкий переход 137 Cs в урожай многолетних травосмесей наблюдался в вариантах 5 ($N_{30}P_{60}K_{180} + Cu_{100}$ $+Mo_{50}+B_{50}$) и 6 ($N_{60}P_{60}K_{180}+Cu_{100}+Mo_{50}+B_{50}$) с внесением полного минерального удобрения и микроудобрений.

Выводы.

- 1. Результаты полевых испытаний показали, что внесение минеральных удобрений на всех вариантах опыта увеличивает урожайность сена по сравнению с контрольной делянкой, где удобрения не вносились.
- 2. Внесение азотных удобрений и микроудобрений на фоне фосфорно-калийных способствует не только повышению урожайности, но и снижает переход ¹³⁷Cs из почвы в растительную массу.
- 3. На торфяно-глеевой почве для производства сена, при использовании его для получения цельного молока и мяса в пределах республиканских допустимых уровней по содержанию радионуклида, более эффективным приемом повышения урожайности и качества продукции бобовозлаковых травосмесей является сочетание применения полного минерального удобрения в дозе $N_{30-60}P_{60}K_{180}$ с внесением микроудобрений ($Cu_{100}+Mo_{50}+B_{50}$).

ЛИТЕРАТУРА

- 1. Кукреш, Л.В. Экономика кормопроизводства в хозяйствах Республики Беларусь /Л.В. Кукреш // Белорусское сельское хозяйство. -2008. -№11 (79).
- 2. Бирюкович, А.Л. Многолетние травы в сырьевом сенокосном конвейере / А.Л. Бирюкович // Известия Национальной академии наук Беларуси. Серия аграрных наук. 2004. №3.
- 3. Гусаков, В.Г. Интенсификация и повышение эффективности кормопроизводства в новых условиях хозяйствования / В. Г. Гусаков [и др.]. Минск: Институт экономики НАН Беларуси, 2008. 92 с.
- 4. Пристер, Б.С. Основные факторы, определяющие поведение радионуклидов в системе почва-растение / Б.С. Пристер [и др.] // Проблемы сельскохозяйственной радиологии: Сб. науч. трудов Киев: УкрНИ-ИСХР, 1992. Вып. 2 С.108-116.

CULTIVATION OF LEGUMES, CEREAL MULTICOMPONENT HERBAL MIXTURES ON THE CONTAMINATED PEAT SOILS BELARUSIAN POLESYE

A.V. SHASHKO, L.N. SHASHKO

Summary

The research on the effect of different doses of fertilizer anthropogenically transformed peat soils contaminated with radionuclides ¹³⁷Cs, on productivity and accumulation of ¹³⁷Cs in grasses.

Key words: anthropogenically transformed peat soils, fertilizers, radionuclides, conversion factor, perennial grasses, productivity.

© Шашко А.В., Шашко Л.Н. Поступила в редакцию 18 марта 2015г.