ДНК-МАРКЕРЫ В СЕЛЕКЦИОННОЙ ПРАКТИКЕ СВИНОВОДСТВА РЕСПУБЛИКИ БЕЛАРУСЬ

Д.А. КАСПИРОВИЧ

Полесский государственный университет, г. Пинск, Республика Беларусь

Введение. Практика ведения селекционной работы в Республике Беларусь на настоящем этапе свидетельствует о том, что применение традиционных методов селекции в свиноводстве за последнее десятилетие позволило повысить продуктивные качества животных в пределах лишь 5 %. Очевидно, это результат сложившейся в республике системы племенной работы, которая, как правило, замыкается в рамках отбора и подбора животных по фенотипу. Реализации имеющегося потенциала продуктивности также препятствует отсутствие совершенных методов адекватной оценки племенных животных на уровне генома [1, 2].

Необходимо отметить, что селекция на высокую продуктивность животных должна включать также и отбор на генетическую устойчивость к болезням и паразитам. Это связано с тем, что хозяйства несут большие экономические потери от использования животных, которые переболевают с последующим понижением продуктивности (например, скорости роста и плодовитости), вследствие чего эффективность производства в целом снижается [3].

В то же время, селекционная практика животноводов зарубежных стран, связанная с использования ДНК-технологий, показывает высокую эффективность их применения в животноводстве. При этом обеспечивается возможность вести селекцию биологических объектов на уровне генома, т. е. осуществлять отбор селекционного материала с предпочтительными генотипами, определяющими как более высокую продуктивность, так и устойчивость к наследственным инфекционным заболеваниям.

В настоящее время в качестве возможных маркеров, представляющих практический интерес как для мирового свиноводства, так и для свиноводства Республики Беларусь, рассматриваются следующие гены: EPOR — эритропоэтиновый рецептор, влияющий на размер гнезда при опоросе [7], MUC4 — муцин-4, обуславливающий предрасположенность поросят к колибактериозу в первые недели жизни [4] и IGF—2 — инсулиноподобный фактор роста—2, оказывающий влияние на откормочные и мясные качества свиней [5, 6].

В связи с этим, с целью создания высокопродуктивных стад, устойчивых к колибактериозу, назрела необходимость в проведении исследований, направленных на изучение возможности использования генов EPOR, MUC4 и IGF–2 в качестве ДНК-маркеров продуктивных качеств свиней пород отечественной селекции.

Методика и объекты исследований. Экспериментальная часть работы выполнялась на базе РСУП «СГЦ «Заднепровский» Оршанского района и государственного племенного завода (ГПЗ) «Порплище» Докшицкого района Витебской области. В качестве объекта исследований использованы свиноматки, хряки-производители и молодняк белорусской крупной белой и белорусской мясной пород.

Генетический анализ биологического материала (биопробы ткани ушей), из которого были выделены и оптимизированы тест-системы для выявления полиморфных вариантов геноврецепторов EPOR, MUC4 и IGF—2 методом ПЦР-анализа в режиме реального времени, проводился в ГНУ «Всероссийский научно-исследовательский институт животноводства Россельхозакадемии»

Обработка цифрового материала проводилась путем биометрического анализа с последующим расчетом таких показателей, как средняя арифметическая величина признака (М), ошибка средней арифметической (±m), критерий достоверности разницы между средними арифметическими значениями сравниваемых групп по определенным признакам (td).

Принято следующее условное обозначение уровня достоверности при сравнении полученных результатов: *-P<0.05, **-P<0.01, ***-P<0.001.

Результаты и их обсуждение. Ранее на базе СГЦ «Заднепровский» и ГПЗ «Порплище» нами были изучена генетическая структура популяций свиней белорусской крупной белой и белорусской мясной пород по генам EPOR, MUC4 и IGF. Наибольшая частота встречаемости аллеля ${\rm EPOR}^{\rm T}$ и генотипа ${\rm EPOR}^{\rm TT}$ по гену EPOR отмечены у свиноматок и хряков белорусской мясной 40

породы (СГЦ «Заднепровский») — 0.56—0.52 и 27.9—29.6 %. Незначительная частота встречаемости мутантного аллеля $MUC4^G$ и отсутствие генотипа $MUC4^{GG}$ по MUC4 установлены среди хряков и свиноматок белорусской крупной белой и белорусской мясной пород (СГЦ «Заднепровский») — 0.16—0.28 и 0.09—0.11. Высокая частота встречаемости аллеля $MUC4^G$ и наличие генотипа $MUC4^{GG}$ выявлены в популяции животных белорусской крупной белой породы (ГПЗ «Порплище») — 0.34—0.5 и 15.8 %. Частота встречаемости доминантного аллеля IGF— 2^Q гена IGF—2 в популяции хряков-производителей белорусской мясной породы составила 0.23, белорусской крупной белой — 0.34, генотипа IGF- 2^{QQ} — 14.6 и 10 %, соответственно.

В ходе дальнейших исследований нами была изучена ассоциация гена EPOR с показателями репродуктивных качеств свиноматок исследуемых пород (табл. 1–2).

Таблица 1 – Репродуктивные качества свиноматок популяции белорусской мясной породы (СГЦ «Заднепровский») в зависимости от генотипа по гену EPOR

Поморожати	Генотипы			
Показатели	EPOR ^{TT}	EPOR ^{CT}	EPOR ^{CC}	
Количество маток, гол.	14	28	7	
Количество опоросов	31	85	17	
Родилось поросят всего, гол.	12,8±0,32	12,5±0,20	12,2±0,35	
В том числе живых, гол.	12,4±0,29**	12,1±0,18**	11,1±0,28	
Масса гнезда при рождении, кг	18,2±0,54	18,0±0,34	16,1±0,79	
Масса поросенка при рождении, кг	1,5±0,03	1,5±0,02	1,4±0,05	
Количество поросят в 21 день, гол.	10,1±0,12*	10,1±0,09*	9,5±0,24	
Молочность, кг	56,5±1,08	54,9±0,72	54,4±1,61	
Масса поросенка в 21 день, кг	5,6±0,08	5,5±0,06	5,7±0,12	
Количество поросят приотъеме, гол.	10,1±0,12*	10,0±0,09*	9,5±0,22	
Масса гнезда при отъеме в 35 дней, кг	94,0±2,05	91,0±1,52	90,3±2,68	
Масса поросенка при отъеме, кг	9,3±0,18	9,1±0,13	9,6±0,28	
Сохранность поросят, %	88,5±1,35	88,5±0,85	85,6±2,12	

Таблица 2 – Репродуктивные качества свиноматок популяции белорусской крупной белой породы (ГПЗ «Порплище») в зависимости от генотипа по гену EPOR

П	Гено	Генотипы		
Показатели	EPOR ^{CT}	EPOR ^{CC}		
Количество маток, гол.	9	12		
Количество опоросов	39	24		
Родилось поросят всего, гол.	11,5±0,30	10,8±0,32		
В том числе живых, гол.	11,4±0,30	10,8±0,32		
Масса гнезда при рождении, кг	12,2±0,31	11,6±0,31		
Масса поросенка при рождении, кг	1,0±0,006	1,0±0,008		
Количество поросят в 21 день, гол.	9,6±0,22	9,2±0,30		
Молочность, кг	48,2±1,29	47,6±1,73		
Масса поросенка в 21 день, кг	5,0±0,09	5,2±0,12		
Количество поросят приотъеме, гол.	9,1±0,29	8,5±0,31		
Масса гнезда при отъеме в 35 дней, кг	136,8±5,01	132,8±5,74		
Масса поросенка при отъеме, кг	15,1±0,33	15,5±0,46		
Сохранность поросят, %	82,4±2,21	79,9±2,75		

Установлено, что свиноматки генотипа $EPOR^{TT}$ достоверно превосходили свиноматок генотипа $EPOR^{CC}$ по количеству живых поросят при рождении на 1,3 гол. (P<0,01). Среди свиноматок генотипов $EPOR^{CT}$ и $EPOR^{CC}$ данная разница составила в 1 гол. (P<0,01).

Также выявлена положительная ассоциация генотипа свиноматок EPOR^{TT} с такими показатели как: масса гнезда при рождении – она была выше, чем у маток генотипа EPOR^{CC} на 2,1 кг, количество поросят в 21 день – на 0,6 гол. (P<0,05), молочность – на 2,1 кг, количество поросят к отъему

- на 0,7 гол. Сохранность молодняка к отъему у свиноматок генотипа EPOR $^{\rm TT}$ была выше на 2,9 проц. пункта относительно свиноматок генотипа EPOR $^{\rm CC}$. Положительная динамика анализируемых показателей отмечена и среди свиноматок генотипа EPOR $^{\rm CT}$.

Свиноматки белорусской крупной белой породы генотипа $EPOR^{CT}$ превосходили свиноматок генотипа $EPOR^{CC}$ по численности поросят при рождении на 0,7 гол., в том числе живорожденных – на 0,6 гол., по массе гнезда при рождении, в 21 день и при отъеме – на 0,6, 0,6 и 4,0 кг, сохранности поросят к отъему – на 2,5 проц. пункта.

В дальнейшем был проведен анализ ассоциации родительских генотипов по гену MUC4 с сохранностью потомства (табл. 3–4).

Таблица 3 – Влияние генотипа свиноматок по гену МИС4 на сохранность поросят-сосунов

Генотипы	n	Количество опоросов	Многоплодие, гол.	Количество поросят при отъеме, гол.	Сохранность поросят к отъему, %
		БКБ, (СГЦ «Заднепровск	сий»	
MUC4 ^{CC}	25	37	12,1±0,26	10,3±0,16*	89,3±1,45**
MUC4 ^{CG}	56	106	$12,4\pm0,18$	$9,8\pm0,12$	84,1±1,12
		БК	Б, ПЗ «Порплище	»	
MUC4 ^{CC}	4	13	10,1±0,38	8,9±0,36	88,8±2,14*
MUC4 ^{CG}	11	31	11,1±0,29	$9,4\pm0,27$	85,9±1,72
MUC4 ^{GG}	5	10	11,8±0,46	9,1±0,37	79,1±3,61
В среднем по БКБ					
MUC4 ^{CC}	29	50	11,6±0,25	$9,9\pm0,17$	89,2±1,20*
MUC4 ^{CG}	67	135	12,1±0,16	$9,7\pm0,11$	84,7±0,90
MUC4 ^{GG}	5	10	11,8±0,46	9,1±0,37	79,1±3,61
БМ, СГЦ «Заднепровский»					
MUC4 ^{CC}	36	70	11,8±0,25	$10,1\pm0,08$	91,2±0,81*
MUC4 ^{CG}	13	27	12,0±0,31	9,9±0,17	86,8±1,78

Таблица 4 – Влияние генотипа хряков-производителей по гену MUC4 на сохранность поросят-сосунов

Генотипы	n	Количество опоросов	Многоплодие, гол.	Количество поросят при отъеме, гол.	Сохранность поросят к отъему, %
		БК	Б, СГЦ «Заднепрово	ский»	
MUC4 ^{CC}	22	61	12,4±0,24	10,2±0,12	88,6±1,03
MUC4 ^{CG}	9	19	12,1±0,41	9,8±0,21	85,4±2,70
			БКБ, ПЗ «Порплищ	(e»	
MUC4 ^{CC}	4	7	11,0±0,57	8,9±0,40	81,2±3,51
MUC4 ^{CG}	7	44	11,6±0,34	9,0±0,23	80,8±2,08
В среднем по БКБ					
MUC4 ^{CC}	26	68	12,2±0,22	10,1±0,13***	87,8±1,02**
MUC4 ^{CG}	16	63	11,8±0,27	9,2±0,18	82,2±1,67
БМ, СГЦ «Заднепровский»					
MUC4 ^{CC}	16	44	12,2±0,30	10,2±0,14	89,5±1,21
MUC4 ^{CG}	4	4	11,5±1,19	9,8±0,47	89,5±3,79

В нашем случае в популяции животных белорусской крупной белой породы (СГЦ «Заднепровский») свиноматки генотипа $MUC4^{CC}$ достоверно превосходили свиноматок генотипа $MUC4^{CG}$ по количеству поросят к отъему на 0,5 гол. (P<0,05), а по сохранности – на 5,2 проц. пункта (P<0,01). Положительная тенденция отмечена и среди свиноматок аналогичной породы заводской популяции ($\Gamma\Pi3$ «Порплище»), где сохранность молодняка за подсосный период, полученного от свино-

маток генотипа $MUC4^{CC}$, была достоверно выше на 9,7 проц. пункта (P<0,05) относительно свиноматок генотипа $MUC4^{GG}$.

В общем по белорусской крупной белой породе свиноматки генотипа $MUC4^{CC}$ имели достоверно более высокую сохранность поросят к отъему на 10,1 проц. пункта (P<0,05) в сравнении с свиноматками генотипа $MUC4^{GG}$, а свиноматки генотипа $MUC4^{CG}$ – на 5,6 проц. пункта.

Сохранность поросят к отъему у свиноматок белорусской мясной породы (СГЦ «Заднепровский») генотипа $MUC4^{CC}$ была достоверно выше на 4,4 проц. пункта (P<0,05) относительно материнского генотипа $MUC4^{CG}$.

Сохранность молодняка к отъему, полученного от хряков белорусской крупной белой породы генотипа $MUC4^{CC}$ (СГЦ «Заднепровский»), была выше на 3,2 проц. пункта относительно потомков хряков генотипа $MUC4^{CG}$. Среди потомков хряков аналогичной породы (ГПЗ «Порплище») между данными генотипами разница по сохранности к отъему составила 0,4 проц. пункта.

В среднем по белорусской крупной белой породе генотип хряков $MUC4^{CC}$ позволял увеличить количество и сохранность поросят к отъему относительно отцовского генотипа $MUC4^{CG}$ на 0,9 гол. (P<0,001) или на 5,6 проц. пункта (P<0,01).

Для прогнозирования и моделирования, устойчивых к колибактериозу генотипов по гену MUC4, необходимо учитывать в схемах подбора, как генотип матери, так и генотип отца, так как аллель $MUC4^G$ находится в доминантном состоянии, независимо от того, от кого передается потомству. Поэтому дополнительно был проведен анализ сохранности поросят, полученных от контрольных спариваний свиноматок и хряков-производителей белорусской крупной белой и белорусской мясной пород при различных вариантах сочетаний родителских генотипов в схемах подбора (табл. 5).

Таблица 5 – Сохранность поросят-сосунов в зависимости от сочетаний родительских генотипов по гену MUC4 в схемах подбора

Генотипы (♀ х ♂)	Количество опоросов	Многоплодие, гол.	Количество поросят к отъему, гол.	Сохранность поросят к отъему, %	
	БКБ, С	ГЦ «Заднепровск	ий»		
$MUC4^{CC} \times MUC4^{CC}$	$MUC4^{CC} \times MUC4^{CC}$ 19 12,0±0,35 10,4±0,22* 90,7±2,0				
$MUC4^{CC} \times MUC4^{CG}$	6	12,7±0,49	$10,6\pm0,55$	87,5±3,57	
$MUC4^{CG} \times MUC4^{CC}$	45	12,6±0,27	$10,2\pm0,17$	86,3±1,36	
$MUC4^{CG} \times MUC4^{CG}$	15	12,3±0,53	$9,7\pm0,25$	83,7±3,07	
	БКЕ	5, ПЗ «Порплище»	>		
$MUC4^{CC} \times MUC4^{CG}$	2	10,5±0,50	$9,0\pm0,00$	85,9±4,09	
$MUC4^{CG} \times MUC4^{CC}$	4	12,5±0,50	$9,7\pm0,85$	77,8±5,08	
MUC4 ^{CG} × MUC4 ^{CG}	15	11,0±0,50	8,9±0,59	82,6±4,83	
$MUC4^{GG} \times MUC4^{CC}$	3	11,7±1,33	9,7±1,66	83,5±11,42	
$MUC4^{GG} \times MUC4^{CG}$	5	12,2±0,48	9,2±0,66	75,4±4,50	
	В	среднем по БКБ			
$MUC4^{CC} \times MUC4^{CC}$	20	11,9±0,36	$10,3\pm0,24$	90,6±1,97**	
$MUC4^{CC} \times MUC4^{CG}$	8	12,1±0,51	10,2±0,49	87,1±2,73*	
$MUC4^{CG} \times MUC4^{CC}$	49	12,6±0,25	$10,1\pm0,17$	85,6±1,34*	
$MUC4^{CG} \times MUC4^{CG}$	30	11,7±0,38	9,3±0,32	83,2±2,81	
$MUC4^{GG} \times MUC4^{CC}$	3	11,7±1,33	9,7±1,66	83,5±11,42	
$MUC4^{GG} \times MUC4^{CG}$	5	12,2±0,48	9,2±0,66	75,4±4,50	
БМ, СГЦ «Заднепровский»					
$MUC4^{CC} \times MUC4^{CC}$	35	12,1±0,37	10,0±0,15	89,5±1,38	
$MUC4^{CC} \times MUC4^{CG}$	4	11,5±1,19	9,7±0,47	89,5±3,79	
$MUC4^{CG} \times MUC4^{CC}$	9	13,0±0,50	10,8±0,27	89,2±2,56	

Выявлено, что сочетание родительских генотипов $MUC4^{CC} \times MUC4^{CC}$ в схемах подбора позволяет достоверно повысить сохранность поросят за подсосный период, что видно на примере белорусской крупной белой породы (СГЦ «Заднепровский»). Так, при наличии аллеля $MUC4^G$ в гено-

типе, как матери, так и отца ($MUC4^{CG} \times MUC4^{CG}$), сохранность поросят к отъему снижалась на 7,0 проц. пункта.

Повышение сохранности потомства у родителей желательных генотипов положительно повлияло на количество поросят к отъему, которое оказалось достоверно больше на 0.7 гол. (P<0.05) в сравнении с сочетанием $MUC4^{CG} \times MUC4^{CG}$.

Аналогичная тенденция была отмечена и среди животных данной породы, разводимой в условиях ГПЗ «Порплище», где сохранность молодняка за подсосный период у родителей генотипов $MUC4^{CC}$ выросла на 2,4 проц. пункта относительно сочетания $MUC4^{GG} \times MUC4^{CC}$ и на 10,5 проц. пункта – по сравнению с сочетанием $MUC4^{GG} \times MUC4^{CC}$.

В среднем же по белорусской крупной белой породе сохранность поросят к отъему (сочетание генотипов родителей $MUC4^{CC} \times MUC4^{CC}$) было достоверно выше, чем у сочетания родительских генотипов $MUC4^{GG} \times MUC4^{CG}$ на 15,2 проц. пункта (P<0,01). Повышение концентрации аллеля $MUC4^{G}$ в сочетании родительских генотипов $MUC4^{GG} \times MUC4^{CG}$ вызвало достоверное снижение сохранности поросят за подсосный период на 11,7 проц. пункта (P<0,05) по сравнению с сочетанием $MUC4^{CC} \times MUC4^{CG}$ и на 10,2 проц. пункта (P<0,05) по сравнению с $MUC4^{CC} \times MUC4^{CC}$.

Заметных различий между сочетаниями генотипов родительских форм в схемах подбора белорусской мясной породы по сохранности поросят выявлено не было, что связано с общей низкой концентрацией аллеля $MUC4^G$ в генотипах исследуемых животных.

В дальнейшем на базе РСУП «СГЦ «Заднепровский» была изучена ассоциация отцовских генотипов по гену IGF–2 с показателями откормочных и мясных качеств молодняка белорусской крупной белой и белорусской мясной пород (табл. 6–7).

Таблица 6 – Продуктивность откормочного молодняка белорусской крупной белой породы в зависимости от генотипа отцов по гену IGF-2

	Генотипы						
Показатели	IGF–2 ^{QQ}	IGF-2 ^{Qq}	IGF-2 ^{qq}				
Количество хряков, гол.	3	7	14				
Количество потомков, гол.	23	72	119				
Откормоч	Откормочные качества						
Возраст достижения живой массы 100 кг, дн.	175,8±1,79**	178,1±1,04*	181,3±0,73				
Среднесуточный прирост, г	763±17,87	$765\pm10,84$	739±5,73				
Затраты корма на 1 кг прироста, к. ед.	3,49±0,04	3,45±0,02*	3,51±0,01				
Мясные качества							
Длина туши, см	95,1±1,94	97,8±0,25	97,6±0,18				
Толщина шпика, мм	27,4±0,66	27,4±0,38	28,1±0,26				
Масса задней трети полутуши, кг	11,1±0,07*	11,1±0,04***	10,9±0,02				
Площадь «мышечного глазка», см ²	41,1±0,38*	41,0±0,29*	40,0±0,23				
Убойный выход, %	67,9±0,35	67,6±0,26	67,4±0,59				

Откормочный молодняк белорусской крупной белой породы, полученный от хряков генотипа $IGF-2^{QQ}$, относительно потомков хряков генотипа $IGF-2^{qq}$ раньше достигал живой массы 100 кг на 5,5 дня (P<0,01), имел более высокие: среднесуточный прирост живой массы – на 24 г; массу задней трети полутуши – на 0,2 кг (P<0,05); площадь «мышечного глазка» – на 1 см 2 (P<0,05), а на 1 кг прироста живой массы затрачивал корма на 0,02 к. ед. меньше.

Среди потомков хряков генотипа IGF -2^{qq} относительно потомков хряков генотипа IGF -2^{qq} выявлено сокращение возраста достижения живой массы 100 кг на 3,2 дня (P<0,05), повышение: среднесуточного прироста — на 26 г, массы задней трети полутуши и площади «мышечного глаз-ка» — на 0,2 кг (P<0,001) и 1 см 2 (P<0,05), затраты корма были достоверно ниже на 0,06 к. ед., соответственно.

Таблица 7 – Показатели продуктивности откормочного молодняка белорусской мясной породы в зависимости от генотипа отцов по гену IGF-2

	Генотипы						
Показатели	IGF–2 ^{QQ}	IGF-2 ^{Qq}	IGF-2 ^{qq}				
Количество хряков, гол.	2	7	16				
Количество потомков, гол.	21 82		150				
Откормочны	Откормочные качества						
Возраст достижения живой массы 100 кг, дн.	180,5±1,66***	184,4±1,02	186,7±0,65				
Среднесуточный прирост, г	773±14,93**	741±9,15	721±5,03				
Затраты корма на 1 кг прироста, к. ед.	3,40±0,03**	$3,52\pm0,02$	3,55±0,01				
Мясные качества							
Длина туши, см	99,4±0,42	98,6±0,20	98,9±0,17				
Толщина шпика, мм	27,09±0,68	27,12±0,28	26,79±0,24				
Масса задней трети полутуши, кг	11,4±0,11*	11,3±0,04	11,2±0,03				
Площадь «мышечного глазка», см ²	43,7±0,62**	42,4±0,30*	41,6±0,20				
Убойный выход, %	70,0±0,39*	69,4±0,17	69,0±0,16				

Что касается белорусской мясной породы у потомков хряков генотипа $IGF-2^{QQ}$ относительно потомков хряков генотипа $IGF-2^{qq}$ установлены: закономерное сокращение возраста достижения живой массы $100~\rm kr$ — на $6.2~\rm дня$ (P<0.001), увеличение среднесуточного прироста живой массы — на $52~\rm r$ (P<0.01) и снижение затрат корма — на $0.15~\rm k$. ед. (P<0.01). По мясным качествам было выявлено достоверное увеличение: массы задней трети полутуши — на $0.2~\rm kr$ (P<0.05), площади «мышечного глазка» — на $2.1~\rm cm^2$ (P<0.01), убойного выхода — на $1.0~\rm проц.$ пункт (P<0.05).

Тенденция роста некоторых анализируемых показателей мясных и откормочных качеств наблюдалась и среди потомков хряков генотипа $IGF-2^{Qq}$, однако статистически достоверных различий выявлено не было, а средние арифметические имели промежуточные значения между потомками хряков генотипов $IGF-2^{QQ}$ и $IGF-2^{qq}$.

Выводы. Таким образом, проведенные нами исследования позволили установить генотипы свиней исследуемых пород по генам EPOR, MUC4 и IGF–2, ассоциированные с более высокими показателями продуктивности. Так, свиноматки белорусской мясной породы генотипа EPOR^{TT} и свиноматки белорусской крупной белой породы генотипа EPOR^{CC} превосходили маток генотипа EPOR^{CC} по количеству живых поросят при рождении на 1,3 и 0,6 гол.

По гену MUC4 выявлена отрицательная ассоциация родительских генотипов MUC4 $^{\rm CG}$ и MUC4 $^{\rm GG}$ с сохранностью поросят-сосунов. В целом по популяциям белорусской крупной белой породы свиноматки генотипа MUC4 $^{\rm CC}$ имели достоверно более высокую сохранность поросят к отъему в сравнении с матками генотипа MUC4 $^{\rm GG}$ — на 10,1 проц. пункта, а матки генотипа MUC4 $^{\rm CG}$ — на 5,6 проц. пункта соответственно. У свиноматок белорусской мясной породы генотипа MUC4 $^{\rm CC}$ сохранность поросят к отъему была достоверно выше на 4,4 проц. пункта относительно маток генотипа MUC4 $^{\rm CG}$. Среди хряков белорусской крупной белой породы между аналогичными генотипами данная разница была достоверной и составила 5,6 проц. пункта.

По гену IGF–2 установлено, что молодняк белорусской крупной белой породы, отцы которых имели генотип IGF– $2^{\rm QQ}$, достоверно превосходил потомков хряков с генотипом IGF– $2^{\rm qq}$ по возрасту достижения живой массы 100 кг на 5,5 дней, среднесуточному приросту живой массы – на 24 г, массе задней трети полутуши – на 0,2 кг, площади «мышечного глазка» – на 1 см², затраты корма на 1 кг прироста были ниже на 0,02 к. ед. У молодняка белорусской мясной породы, полученного от хряков генотипа IGF– $2^{\rm QQ}$, выявлено достоверное сокращение возраста достижения живой массы 100 кг на 6,2 дня; повышение среднесуточного прироста на 52 г (P<0,01); массы задней трети полутуши на 0,2 кг; площади «мышечного глазка» на 2,1 см²; затраты корма были ниже на 0,15 к. ед.

ЛИТЕРАТУРА

- 1. Епишко, Т.И. Интенсификация селекционных процессов в свиноводстве с использованием классических методов генетики и ДНК-технологии: дис. ... д-ра с.-х. наук: 06.02.01 / Т.И. Епишко. Жодино, 2008. 324 с.
- 2. Епишко, Т.И. Интенсификация селекционных процессов в свиноводстве с использованием классических методов генетики и ДНК-технологии: автореф. ... дис. д-ра с.-х. наук: 06.02.01. / Т.И. Епишко; РУП «Научнопрактический центр НАН Беларуси по животноводству». Жодино, 2008. 44 с.
- 3. Лэсли, Дж.Ф. Генетические основы селекции сельскохозяйственных животных / Дж.Ф. Лэсли ; пер. с англ. и предислов. Д.В. Карликова. Москва : Колос, 1982. 391 с.
- 4. Linkage and comparative mapping of the locus controlling susceptibility towards E. coli F4 ab/ac diarrhoea in pigs / C.B. Jorgensen [et al.] // Cytogenet Genome Res. 2003. N 102. P. 157–162.
- 5. Mapping genomic regions associated with growth rate in pigs / E. Casas-Carrillo [et al.] // J. Anim. Sci. 1997. Vol. 75. 2047–2053.
- 6. Relationship of growth hormone and insulin-like growth factor-1 genotype with growth and carcass traits in swine / E. Casas-Carillo [et al.] // Anim. Genet. 1997. Vol. 28. P. 88–93.
- 7. The effect of breed and intrauterine crowding on fetal erythropoiesis on day 35 of gestation in swine / J.L. Vallet [et al.] // J. Anim. Sci. 2003. Vol. 71. P. 2352–2356.

DNA-MARKERS IN SELECTION PRACTICE OF CULTIVATION PIGS OF THE REPUBLIC OF BELARUS

D.A. KASPIROVICH

Summary

The association of genes EPOR, MUC4 and IGF-2 with indicators of efficiency of pigs of breeds of the Belarus selection is studied.

Parental genotypes (EPOR^{TT}, MUC4^{CC}, IGF–2^{QQ}) the pigs, allowing to raise safety and efficiency of young growth, and also indicators of reproductive qualities of sows.

© Каспирович Д.А.

Поступила в редакцию 3 октября 2011г.