NO-синтазная активность прокариот

Авторы

  • В.И. Дунай Полесский государственный университет, г. Пинск, Республика Беларусь
  • А.С. Губейко Полесский государственный университет, г. Пинск, Республика Беларусь
  • О.Н. Жук Полесский государственный университет, г. Пинск, Республика Беларусь

Ключевые слова:

монооксид азота, бактерии, бактериальная NO-синтаза, NO-синтазная активности, прокариоты

Аннотация

В обзорной статье представлен анализ результатов научных исследований о NO-синтазы прокариот (bNOS). Дана общая характеристика bNOS, физиологической роли бактериального монооксида азота (NO) как у прокариот, так и эукариот и основных методов определения NO у прокариот.

Биографии авторов

В.И. Дунай, Полесский государственный университет, г. Пинск, Республика Беларусь

канд. биол. наук, доцент

А.С. Губейко, Полесский государственный университет, г. Пинск, Республика Беларусь

лаборант кафедры биотехнологии, магистр

О.Н. Жук, Полесский государственный университет, г. Пинск, Республика Беларусь

канд. биол. наук, доцент кафедры биотехнологии

Библиографические ссылки

Кузнецова, В. Л. Оксид азота: свойства, биологическая роль, механизмы действия / В. Л. Кузнецова, А. Г. Соловьева // Современные проблемы науки и образования. 2015. – N 4. – URL.: https://science-education.ru/ru/article/view?id=21037 (дата обращения: 10.08.2024).

Роль оксида азота в процессах свободнорадикального окисления / А. Г. Соловьева, В. Л. Кузнецова, С. П. Перетягин [и др.] // Вестник российской военно-медицинской академии. – 2016. – Т. 1. – № 53. – С. 228-233.

NO-синтазная активность в фотоморфогенезе Neurospora сrassa / С. Ю. Филиппович, М. В. Онуфриев, Д. И. Перегуд [и др.] // Прикладная биохимия и микробиология. – 2020. – Т. 56. – № 4. – С. 358-365.

Гуманова, Н. Г. Оксид азота, его циркулирующие метаболиты NOx и их роль в функционировании человеческого организма и прогнозе риска сердечно-сосудистой смерти / Н. Г Гуманова // Профилактическая медицина. – 2021. – Т. 24. – № 9. – С. 102-109.

Al-Attar, S. An electrogenic nitric oxide reductase / S. Al-Attar, S. Vries // Federation of European Biochemical Societies. – 2015. – № 589. – P. 2050-2057

Lisbett, N.M. Nitric oxide regulation of H-NOXsignaling pathways in bacteria / L. M. Nisbett, E. M. Boon // Biochemistry. – 2016. – № 55. – P. 4873-4884

Голиков, П. П. Оксид азота и перекисное окисление липидов как факторы эндогенной интоксикации при неотложных состояниях / П. П. Голиков [и др.] // Бюллетень экспериментальной биологии и медицины – 2000. – № 7. – С. 6–9.

Козина, О. В. Образование и биологиче-ская роль NO при аллергическом воспалении / О. В. Козина, Л. М. Огородова // Бюллетень сибирской медицины – 2009. – № 3. – С. 95–105.

Ванин, А. Ф. Оксид азота в биомедицин-ских исследованиях / А. Ф. Ванин // Вестник Российской академии медицинских наук – 2000. – № 4. – С. 3–5.

Bredt, D. S. Nitric Oxide Signaling in Brain: Potentiating the Gain with YC-1 / D. S. Bredt // Molecular Pharmacology – 2003. – Vol. 63. – Р. 1206–1208.

Сосунов, А. А. Оксид азота как межклеточный посредник / А. А. Сосунов // Соровский образовательный журнал. – 2000. – Т. 6. – С. 27–34.

Свободнорадикальное окисление липидов и белков – универсальный процесс жизнедеятельности организма / М. А. Луцкий, Т. В. Куксова, М. А. Смелянец, Ю. П. Лушникова // Успехи современного естествознания. – 2014. – № 12. – С. 24–28.

Малахов, В.О. Проблема оксиду азоту в неврологии: монография / В. О. Малахов, Г. М. Завгородня, В. С. Личко [и др.]. – Суми : Видавництво СумДПУ им. А.С. Макаренка, 2009. – 242 с.

Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from L-arginine // L. J. Ignarro [et al.] // Proceedings of the National Academy of Sciences of the United States of America Vols. – 1993. – Vol. 90. – P. 8103-8107.

Arginine- Definition, Structure, Sources, Properties, Biosynthesis, Uses. – URL.: https://scienceinfo.com/arginine-amino-acid/. (accessed: 15.10.2024).

Vascular Sources of Nitric Oxide. – URL.: https://encyclopedia.pub/entry/37324. (ac-cessed :15.10.2024).

Biological Assessment of the NO-Dependent Endothelial Function. – URL.: https://www.mdpi.com/1420-3049/27/22/7921. (accessed: 15.10.2024).

The complete genome sequence of the grampositive bacterium Bacillus subtilis / F. Kunst [et al.] // Nature. – 1997. – Vol. 390. –P. 249-256.

Whole genome sequencing of meticillin-resistant Staphylococcus aureus / М. Kuroda [et al.] // Lancet. – 2001. – Vol.357. – P. 1225–1240

Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1 / O. White [et al.] // Science. – 1999. – Vol. 286. – P. 1571-1577.

Takami, H. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis / H. Takami // Nucleic Acids Res. – 2000. – Vol. 28. – P. 4317–4331.

Identification of nitric oxide synthase in Staphylococcus aureus / W.S. Choi [et al.] // Biochem. Biophys. Res. Commun. – 1997. – Vol. 237. – P. 554–558.

Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat / D. Adawi [et al.] // Hepatology. – 1997. – Vol. 25, N 3. – P. 642–647.

Synthesis of nitric oxide from the two equivalent guanidino nitrogens of L-arginine by Lactobacillus fermentum / H. Morita [et al.] // J. Bacteriol. – 1997. – Vol. 179. – N 24. – P. 7812–7815.

Xu, J. Evaluation of nitric oxide production by lactobacilli / J. Xu, W. Verstraete // Appl. Microbiol. Biotechnol. – 2001. – Vol. 56. – P. 504–507.

Методы общей бактериологии [сайт].: – URL.: http://lib.ysu.am/disciplines_bk/fa4de770d3ef76277fdc68d136b766eb.pdf. (дата доступа: 25.05.2024).

Bacterial nitric-oxide synthases operate without a dedicated redox partner / I. Gusarov [et al.] // J. Biol Chem. – 2008. – Vol. 283. – № 19. – Р. 13140-13147.

Филиппович, С. Ю. NO-синтазы бактерий / С. Ю. Филиппович // Биохимия. – 2010. – Т. 75. – № 10. – С. 1367 – 1376.

Correa-Aragunde, N. Structure diversity of nitric oxide synthases (NOS): the emergence of new forms in photosynthetic organisms / N. Correa-Aragunde, N. Foresi, L. Lamattina // Front. Plant Sci. – 2013. – Vol. 4. – № 232. – P. 1-3.

Bacterial nitric oxide synthases: what are they good for? // J. Sudhamsu[ et al] // Trends in Microbiology. – 2009. – Vol. 17. – № 5. – P. 212 – 218.

Hongbao, M. Inducible Nitric Oxide Syn-thase (iNOS) and Renal Obstruction Re-search Literatures / M. Hongbao, M. Young // New York Science Journal. – 2015. – Vol. 8. – № 4. – P. 87-104.

Crane, B.R. Bacterial nitric oxide synthases / B.R. Crane, J. Sudhamsu, B.A. Patel // Annual Review of Biochemistry. – 2010. – № 79. – P. 445–470.

Adak, S. Direct Evidence for Nitric Oxide Production by a Nitric-oxide Synthase-like Protein from Bacillus subtilis / S. Adak, K.S. Aulak, D.J. Stuehr // The journal of biological chemistry. – 2002. – Vol. 277. – № 18. – P. 6167–16171.

Role of NOS-like proteins found in bacteria. – URL.: ttps://dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/e18c0949-5d52-4cae-9cff-ab7dfd584bbe/content. (accessed 15.10.2024).

Nitration of a peptide phytotoxin by bacterial nitric oxide synthase / J. Kers [et al.] // Nature. – 2004. – № 429. –P. 79–82.

Most bacterial NOS lacks tetrahedral zinc center, with the exception of NOS from Streptomyces turgidiscabies, where one of the two Cys is conserved and the other is replaced by His / J.A. Kers [et al.] // Molecular Microbiology. – 2004. – № 55. – P. 1025–1033.

Alderton, W.K. Nitric oxide synthases: structure, function and inhibition / W.K. Alderton, C.E. Cooper, R.G. Knowles // Biochem. J. – 2001. – № 357. – P. 593–615.

NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum / T. Agapie, S. Suseno, J. J. Woodward, S. Stoll, R.D. Britt, M.A. Marletta // Proceedings of the National Academy of Sciences of the United States of America. – 2009. – № 106. – P. 16221–16226.

Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom / S. Jeandroz, D. Wipf, D. J. Stuehr, L. Lamattina, M. Melkonian, Z. Tian, Y. Zhu, E. J. Carpenter, G. Ka-Shu Wong, D. Wendehenne // Plant biology. – 2016. – Vol. 9. – № 417. – P. 2-10.

Crane, B.R. The enzymology of nitric oxide in bacterial pathogenesis and resistance / B.R. Crane // Biochem Soc Trans. – 2008. – Vol. 36. – P. 1149–1154.

Filippovich, S. Y. Bacterial NO synthases / S. Y. Filippovich // Biochemistry Moscow. – 2010. – № 75. – P. – 1217–1224.

Structure of Nitric Oxide Synthase Oxygenase Dimer with Pterin and Substrate / B.R. Crane, A.S. Arvai, D.K. Ghosh [et al.] // Science. – 1998. – Vol. 279. – P. 2121–2126.

Ауторегуляция и аутоингибирование основных изоформ NO-синтаз (краткий обзор) / Н. А. Попова, С. К. Соодаева, И. А. Климанов [и др.] // Современные технологии в медицине. – 2023. – Т. 15. – № 3. – 53-60.

Попова, Н. А. Формирование структурной схемы универсальной модели каталитического цикла NO-синтаз / Н. А. Попова, И. А. Климанов, С. К. Соодаева, А. А. Темнов // Современные проблемы науки и об-разования. – 2022. – № 4 – URL.: https://science-education.ru/ru/article/view?id=31989&ysclid=m3i72v7cfo180420361. (дата доступа 10.05.2024).

Катион нитрозония NO+ ингибирует функции оксида азота (NO) в регуляции роста биопленок Pseudomonas aeruginosa / С. В. Васильева, Н. В. Алексеева, Ю. М. Романова, А. Ф. Ванин / Молекулярная генетика, микробиология и вирусология. – 2023. – Т.41. – № 1.– С.32-37.

Bacterial Nitric-oxide Synthases Operate without Dedicated Redox Partner / I. Gusarov [et al.] // Journal of biological chemistry. – 2008. – V.283. – N 19. – P. 13140-13147.

Губейко, А. С. Оценка NO-синтазной активности у прокариот и низших эукариот / А. С. Губейко, О. Н. Жук, В. И. Дунай // Пинские чтения : материалы II международной научно–практической конференции,приуроченной к 927-летию основания города Пинска, 3 октября 2024 г. / Министерство образования Республики Беларусь [и др.] ; редкол.: В.И. Дунай [и др.]. – Пинск : ПолесГУ, 2024. – С. 63-66.

Губейко, А. С. Определение NO-синтазной активности у прокариот и эукариот непрямым методом / А. С. Губейко, Д. А. Слиж // Молодежь в науке – 2024 : тезисы докладов XXI Международной научной конференции молодых ученых, Минск, 29–31 октября 2024 г. : в 2ч. / Национальная академия наук Беларуси, Совет молодых ученых ; редкол.: В. Г. Гусаков (гл. ред.) [и др.]. – Минск : Беларуская навука, 2024. – Ч. 1. – 262 с.

Gusarov, I. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria / I. Gusarov, E. Nudler // Proc. Natl. Acad. Sci. USA. –2005. – Vol. 102. – Р. 13855–13860.

Gusarov, I. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics / I. Gusarov [et al.] // Science. – 2009.– Vol. 325. – Р. 380–1384.

Nitration of a peptide phytotoxin by bacterial nitric oxide synthase / J. A. Kers [et al] // Nature. – 2004. – Vol. 429. – P. 79–82.

Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages / K. Shatalin [et al.] // Proc. Natl. Acad. Sci. USA. – 2008. – Vol. 105. – P. 1009–1013.

The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins / L.A. Bowman [et al.] // Adv. Microb. Physiol. – 2011. – Vol. 59. – P. 135–219.

Bacterial nitric oxide extends the lifespan of C. elegans / I. Gusarov [et al.] // Cell. – 2012. – Vol. 152. – P. 818–830.

Оксидативный стресс, индуцированный антибактериальными препаратами, и ан-тибиотикорезистентность бактерий / Л.Б Постникова [и др.] // Пульмонология. – 2017. – Т. 27. – № 5. – С. 664-671.

Nitric oxide protects bacteria from amino-glycosides by blocking the energy-dependent phases of drug uptake / B.D. McCollister [et al] // Antimicrob Agents Chemother. – 2011. – Vol. 55. – № 5. – Р. 2189-2196

Evidence for Nitric Oxide Synthase Activity in Staphylococcus xylosus Mediating Nitrosoheme Formation / G. Ras, V. Zuliani, P. Derkx, T.M. Seibert [et al.] // Frontiers in Microbiology. – 2017. – Vol.8. – № 598. – P. 1-11.

Rastogi, S. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses / S. Rastogi, A. Singh // Frontiers in Pharmacology. – 2022. – Vol. 13. – P. 1-17.

Studies of the Impact of the Bifidobacterium Species on Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Murine Macrophages of the BMDM Cell Line / A. Zabłocka [et al.] // Probiotics and Antimicrobial Proteins. – 2024. – N 16. – Р. 1012–1025.

Пробиотики для растений: NO-продуцирующие лактобациллы защищают растения от засухи / Д.Р. Яруллина, Е.В. Асафова, Ю.Е. Картунова [и др.] // Прикладная биохимия и микробиология. – 2014. – Т.50. – № 2. – С. 189-192.

Nitric Oxide is Involved in the Azospirillum brasilense-induced LateralRoot Formation in Tomato / C. M. Creus, E.M. Casanovas, M.A. Pereyra, C.A. Barassi // Planta. – 2005. – № 221. – P. 297–303.

Губейко, А.С. Способность пробиотических бактерий к NO-синтазной активности / А.С. Губейко // Научный потенциал молодежи – будущему Беларуси : материалы XVIII международной молодежной научно-практической конференции, Пинск, 19 апреля 2024 г. : в 2 ч. / Министерство образования Республики Беларусь [и др.]; редкол.: В.И. Дунай [и др.]. – Пинск: ПолесГУ, 2024. – Ч. 2. – С. 190-192.

Ковалев, В. В. Современные методы мониторинга оксида азота в биологических объектах, их достоинства и недостатки / В. В. Ковалев, В. И. Горбачев // БМЖ.– 2005. – № 3. – С. 5-8.

Goshi, E. Nitric oxide detection methods in vitro and in vivo / E. Goshi, G. Zhou, Q. He // Medical Gas Research. – 2019. –Vol. 9. – № 4. – P. 192-207.

The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: biofilm formation, swarming, and dispersal / F. Schreiber [et al.] // BMC Microbiol. – 2011. – № 11. – P. 1-11.

Muñoz-Fuentes R.M. Valoración de un método para determinar nitritos y nitratos en muestras biológicas / R.M. Muñoz-Fuentes, F. Vargas, NA. Bobadilla // Rev Invest Clin. – 2003. – № 55. – P. 670-676.

Митрофанова, В. И. Аналитическая хи-мия. Лабораторный химические методы анализа: учебное поссобие. Часть IV-2 – физико-химические методы анализа / В. И Митрофанова. – Благовещенск : Амурский гос. ун-т, 2020 – 88с.

Методика определения нитритов с реактивом Грисса [сайт]. – URL.: https://portal.tpu.ru/SHARED/t/TRETYAKOV/Ucheb_rabota/mips/Tab2/Nitrites.pdf. (дата обращения: 01.05.2024).

Значение изменений метаболизма oксида азота в патогенезе гипертонической болезни у больных старшего возраста [сайт]. – URL.: https://scienceforum.ru/2016/article/2016024598?ysclid=lvo20rasvs455305743. (дата обращения: 01.05.2024).

Мажитова М.В. Спектрофотометрическое определение уровня метаболитов монооксида азота в плазме крови и ткани мозга белых крыс // Современные проблемы науки и образования. – 2011. – № 3. – URL.: https://science-education.ru/ru/article/view?id=4655 (дата обращения: 10.05.2024).

References

Kuznecova, V. L., Solov'eva A. G. Oksid azota: svojstva, biologicheskaya rol', mekhanizmy dejstviya [Nitric oxide: properties, biological role, mechanisms of action]. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education], 2015, no. 4. (In Russian). Available at: https://science-education.ru/ru/article/view?id=21037 (ac-cessed 10.08.2024.).

Solovyova A.G., Kuznetsova V.L., Peretyagin S.P., Didenko N.V., Dudar A.I. Rol' oksida azota v processah svobodnoradikal'nogo okisleniya [Role of nitric oxide in processes of free radical oxidation]. Vestnik rossijskoj voenno-medicinskoj akademii [Vestnik of Russian military medical Academy], 2016, Vol. 1, no. 53, pp. 228-233. (In Russian)

Filippovicha S.Yu., Onufrievb M.V., Pere-gudc D.I., Bachurinaa G.P., Kritskya M.S. NO-sintaznaya aktivnost' v fotomorfogeneze Neurospora srassa [NO-Synthase Activity in Photomorphogenesis in Neurospora сrassa]. Prikladnaya biohimiya i mikrobiologiya [Applied Biochemistry and Microbiology], 2020, Vol. 56, no. 4, pp. 358-365. (In Russian)

Gumanova N.G. Oksid azota, ego cirkuliruyushchie metabolity NOx i ih rol' v funkcionirovanii chelovecheskogo organizma i prognoze riska serdechno-sosudistoj smerti [Nitric oxide and its circulating NOx metabolites, their role in human body functioning and cardiovascular death risk prediction (part I)]. Profilakticheskaya medicina [The Rus-sian Journal of Preventive Medicine], 2021, Vol. 24, no.9, pp. 102-109. (In Russian)

l-Attar, S. An electrogenic nitric oxide reductase. Federation of European Biochemical Societies, 2015, no. 589, рр. 2050-2057.

Lisbett N.M. Nitric oxide regulation of H-NOXsignaling pathways in bacteria. Bio-chemistry, 2016, no. 55, pp. 4873-4884

Golikov, P.P. Oksid azota i perekisnoe okislenie lipidov kak faktory endogennoj intoksikacii pri neotlozhnyh sostoyaniyah [Nitric oxide and lipid peroxidation as factors in endogenous intoxication in emergency states]. Byulleten' eksperimental'noj biologii i mediciny [Bulletin of Experimental Biology and Medicine], 2000, no. 7, pp. 6-9. (In Rus-sian)

Kozina O.V. Obrazovanie i biologicheskaya rol' NO pri allergicheskom vospalenii [Formation and biological role NO at an allergic inflammation]. Byulleten' sibirskoj mediciny [Bulletin of Siberian Medicine], 2009, no. 3, pp. 95-105. (In Russian)

Vanin A.F. Oksid azota v biomedicinskih issledovaniyah [Nitric oxide: properties, biological role, mechanisms of action]. Vestnik Rossijskoj akademii medicinskih nauk [Nitric oxide in biomedical research], 2000, no. 4, pp. 3–5. (In Russian)

Bredt, D.S. Nitric Oxide Signaling in Brain: Potentiating the Gain with YC-1. Molecular Pharmacology, 2003, Vol. 63, pp. 1206–1208.

Sosunov A.A. Oksid azota kak mezhkletochnyj posrednik [Nitric oxide as an intercellular messenger]. Sorovskij obrazovatel'nyj zhurnal [Soros Educational Journal], 2000, Vol. 6, pp. 27–34. (In Russian)

M.A., Kuksova T.V., Smelyanec M.A., Lushnikova Yu.P. Svobodnoradikal'noe okislenie lipidov i belkov – universal'nyj process zhiznedeyatel'nosti organizma [Lipid and protein free-radical oxidation as a universal vital process of the organism]. Uspekhi sovremennogo estestvoznaniya [Advances in current natural sciences], 2014, no. 12, pp.24–28. (In Russian)

Malahov V.O., Zavgorodnya G.M., Lichko V.S., Dzhanelіdze T.T., Voloh F.O. Problema oksidu azotu v nevrologii: monografiya [The problem of nitrogen oxide in neurology]. Sumi, Vidavnictvo SumDPU im. A.S. Makarenka, 2009. – 242 p. (In Ukrainian)

L. J. Ignarro et al. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from L-arginine. Proceedings of the National Academy of Sciences of the United States of America Vols. 1993, Vol. 90, pp. 8103-8107.

Arginine- Definition, Structure, Sources, Properties, Biosynthesis, Uses. Available at: https://scienceinfo.com/arginine-amino-acid/. (accessed 15.10.2024).

Vascular Sources of Nitric Oxide. Available at: https://encyclopedia.pub/entry/37324. (ac-cessed 15.10.2024).

Biological Assessment of the NO-Dependent Endothelial Function. Available at: https://www.mdpi.com/1420-3049/27/22/7921. (accessed 15.10.2024).

Kunst F. The complete genome sequence of the grampositive bacterium Bacillus subtilis, Nature, 1997, Vol.390, pp. 249-256.

Kuroda М. [et al.]. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet, 2001, Vol. 357, pp. 1225–1240

White O. [et al.].Genome sequence of the radioresistant bacterium Deinococcus radi-odurans R1. Science, 1999, Vol. 286, pp. 1571-1577.

Takami, H. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res, 2000, Vol. 28, pp. 4317-4331.

W.S. Choi [et al.]. Identification of nitric oxide synthase in Staphylococcus aureus, Biochem. Biophys. Res. Commun, 1997, Vol. 237, pp. 554-558.

D. Adawi [et al.] Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat. Hepatology, 1997, Vol. 25, no. 3, pp. 642-647.

H. Morita [et al.]. Synthesis of nitric oxide from the two equivalent guanidino nitrogens of L-arginine by Lactobacillus fermentum. J. Bacteriol, 1997, Vol. 179, no. 24, pp. 7812–7815.

Xu, J., Verstraete W. Evaluation of nitric oxide production by lactobacilli. Appl. Microbiol. Biotechnol, 2001, Vol. 56, pp. 504–507.

Metody obshchej bakteriologii [Manual of Methods for General Bacteriology]. (In Russian). Available at: http://lib.ysu.am/disciplines_bk/fa4de770d3ef76277fdc68d136b766eb.pdf. (accessed 25.05.2024).

Gusarov I. Bacterial nitric-oxide synthases operate without a dedicated redox partner. J. Biol Chem, 2008, Vol. 283, no 19, pp. 13140-13147.

Filippovich, S.Yu. NO-sintazy bakterij [Bacterial no synthases]. Biohimiya [Biochemistry], 2010, Vol. 75, no.10, pp. 1367 – 1376. (In Russian)

Correa-Aragunde N., Foresi N., Lamattina L. Structure diversity of nitric oxide synthases (NOS): the emergence of new forms in photosynthetic organisms. Front. Plant Sci, 2013, Vol. 4, no. 232, pp. 1-3.

Sudhamsu J. Bacterial nitric oxide synthases: what are they good for? Trends in Microbiology, 2009, Vol. 17, no. 5, pp. 212 – 218.

Hongbao, M., Young M. Inducible Nitric Oxide Synthase (iNOS) and Renal Obstruction Research Literatures. New York Science Journal, 2015, Vol. 8, no. 4, pp. 87-104.

Crane B.R., Sudhamsu J., Patel B.A. Bacterial nitric oxide synthases. Annual Review of Biochemistry, 2010, no. 79, pp. 445–470.

Adak S., Aulak K.S., D.J. Stuehr Direct Evidence for Nitric Oxide Production by a Nitric-oxide Synthase-like Protein from Bacillus subtilis. The journal of biological chemistry, 2002, Vol.277, no. 18, pp. 6167–16171.

Role of NOS-like proteins found in bacteria. Available at: ttps://dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/e18c0949-5d52-4cae-9cff-ab7dfd584bbe/content (accessed 15.10.20240.

Kers J. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature, 2004, no. 429, pp. 79–82.

Kers J.A. Most bacterial NOS lacks tetrahedral zinc center, with the exception of NOS from Streptomyces turgidiscabies, where one of the two Cys is conserved and the other is replaced by His. Molecular Microbiology, 2004, no. 55, pp. 1025–1033.

Alderton W.K., Cooper C.E., R.G. Knowles Nitric oxide synthases: structure, function and inhibition. Biochem. J., 2001, no. 357, pp. 593–615.

NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium. Proceedings of the National Academy of Sciences of the United States of America, 2009, no. 106, pp. 16221–16226.

Jeandroz S., Wipf D., Stuehr D. J., Lamattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Ka-Shu Wong G., Wendehenne D. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Plant biology, 2016, Vol. 9, no. 417, pp. 2-10.

Crane B.R. The enzymology of nitric oxide in bacterial pathogenesis and resistance. Biochem Soc Trans, 2008, Vol. 36, pp. 1149–1154.

Filippovich S.Y. Bacterial NO synthases. Biochemistry Moscow, 2010, no. 75, pp. 1217–1224.

Crane B.R., Arvai A.S., Ghosh D.K., Wu C., Getzoff E.D., Stuehr D.J., TaineStructure J.A. of Nitric Oxide Synthase Oxygenase Dimer with Pterin and Substrate. Science,1998, Vol. 279, pp. 2121- 2126.

Popova N.A., Soodaeva S.K., Klimanov I.A., Misharin V.M., Temnov A.A. Autoregulyaciya i autoingibirovanie osnovnyh izoform NO-sintaz (kratkij obzor) [Autoregulation and Autoinhibition of the Main NO Synthase Isoforms (Brief Review)]. Sovremennye tekhnologii v medicine [Modern Technologies in Medicine], 2023, Vol. 15, no. 3, pp. 53-60. (In Russian)

Popova N.A., Klimanov I.A., Soodaeva S.K., Temnov A.A. Formirovanie strukturnoj skhemy universal'noj modeli kataliticheskogo cikla no-sintaz [Formation of the structural scheme for universal NO-synthase catalytic cycle model]. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education], 2022, no. 4. (In Russian). Available at:https://science-educa-tion.ru/ru/article/view?id=31989&ysclid=m3i72v7cfo180420361 (accessed 10.08.2024.).

Vasil'eva S.V., Alekseeva N.V., Romanova Yu.M., Vanin A.F. Kation nitrozoniya NO+ ingibiruet funkcii oksida azota (NO) v regulyacii rosta bioplenok Pseudomonas aeruginosa [Nitrosonium cation NO+ inhibits nitric oxide (NO) functions in biofilm production with pathogenic Pseudomonas aeruginosa in vitro]. Molekulyarnaya genetika, mikro-biologiya i virusologiya [Molecular Genetics, Microbiology and Virology], 2023, Vol.41, no. 1, pp.32-37. (In Russian)

Gusarov I. Bacterial Nitric-oxide Synthases Operate without Dedicated Redox Partner. Journal of biological chemistry, 2008, Vol. 283, no 19, pp. 13140-13147.

Gubejko, A.S., Zhuk O.N., Dunaj V.I. Ocenka NO-sintaznoj aktivnosti u prokariot i nizshih eukariot [Assessment of NO-synthase activity in prokaryotes and lower eukaryotes]. Pinskie chteniya : materialy II mezhdunarodnoj nauchno–prakticheskoj konferencii,priurochennoj k 927-letiyu osnovaniya goroda Pinska. Pinsk, 2024, pp. 63-66. (In Belarus)

Gubejko A.S., Slizh D.A. Opredelenie NO-sintaznoj aktivnosti u prokariot i eukariot nepryamym metodom [Determination of NO-synthase activity in prokaryotes and eukaryotes by indirect method ]. Molodezh' v nauke – 2024. Minsk, 2024, part 1, 262 p. (In Belarus)

Gusarov I., Nudler E. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc. Natl. Acad. Sci. USA, 2005, Vol. 102. pp.13855–13860.

Gusarov I. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science, 2009, Vol. 325, pp.380–1384.

Kers J.A. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature, 2004, Vol. 429, pp. 79–82.

Shatalin K. Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proc. Natl. Acad. Sci. USA, 2008, Vol. 105, pp.1009–1013.

L. A. Bowman The diversity of microbial responses to nitric oxide and agents of ni-trosative stress close cousins but not identical twins. Adv. Microb. Physiol, 2011, Vol. 59, pp. 135–219.

Gusarov I. Bacterial nitric oxide extends the lifespan of C. elegans. Cell, 2012, Vol. 152, pp. 818–830.

Oksidativnyj stress, inducirovannyj antibakterial'nymi preparatami, i antibiotikorezistentnost' bakterij [Antibiotic3induced oxidative stress and antibiotic resistance]. Pul'monologiya [Russian Pulmonology], 2017, Vol. 27, no. 5, pp. 664–671. (in Russian)

McCollister B.D. Nitric oxide protects bacteria from aminoglycosides by blocking the energy-dependent phases of drug uptake. Anti-microb Agents Chemother, 2011, Vol. 55, no. 5, pp. 2189-2196.

Ras G., Zuliani V., Derkx P., Seibert T.M., Leroy S., Talon R. Evidence for Nitric Oxide Synthase Activity in Staphylococcus xylosus Mediating Nitrosoheme Formation,Frontiers in Microbiology, 2017,Vol.8, no. 598, pp. 1-11.

Rastogi S., Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune re-sponses. Frontiers in Pharmacology, 2022, Vol. 13, pp. 1-17.

Zabłocka A. Studies of the Impact of the Bifidobacterium Species on Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Murine Macrophages of the BMDM Cell Line. Probiotics and Antimicrobial Proteins, 2024, no. 16, pp. 1012–1025.

Yarullina D.R., Asafova E.V., Kartunova J.E., Ziyatdinova G.K., Il’inskaya O.N. Probiotiki dlya rastenij: NO-produciruyushchie laktobacilly zashchishchayut rasteniya ot zasuhi [Probiotics for Plants: NO Producing Lactobacilli Protect Plants from Drought]. Prikladnaya biohimiya i mikrobiologiya [Applied Biochemistry and Microbiology], 2014, Vol. 50, no. 2, pp. 189-192. (In Russian)

Creus C.M., Casanovas E.M., Pereyra M.A., Barassi C.A. Nitric Oxide is Involved in the Azospirillum brasilense-induced Lateral Root Formation in Tomato. Planta, 2005, no 221, pp. 297–303.

Gubejko, A.S. Sposobnost' probioticheskih bakterij k NO-sintaznoj aktivnosti [The ability of probiotic bacteria to NO-synthase activity]. Nauchnyj potencial molodezhi – budushchemu Belarusi. Pinsk, 2024, part 2, pp. 190-192.

Kovalev V. V. Sovremennye metody monitoringa oksida azota v biologicheskih ob"ektah, ih dostoinstva i nedostatki [Modern methods for monitoring nitric oxide in biological objects, their advantages and disadvantages]. BMZh [British Medical Journal], 2005, no. 3, pp. 5-8. (In Russian)

Goshi E., Zhou G., He Q. Nitric oxide detection methods in vitro and in vivo. Medical Gas Research, 2019, Vol. 9, no. 4, pp. 192-207.

Schreiber F. The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: biofilm formation, swarming, and dispersal. BMC Microbiol, 2011, no 11, pp. 1-11.

Muñoz-Fuentes R.M., Vargas F., Bobadilla NA. Valoración de un método para determinar nitritos y nitratos en muestras biológicas, Rev Invest Clin, 2003, no 55, pp. 670-676.

Mitrofanova V. I. Analiticheskaya himiya. Laboratornyj himicheskie metody analiza: uchebnoe possobie. Chast' IV-2 – fiziko-himicheskie metody analiza [Laboratory chemical methods of analysis]. Blagoveshchensk. Amurskij gos. un-t, 2020, 88 p. (In Russian)

Metodika opredeleniya nitritov s reaktivom Grissa [Method of determination of nitrites with Griss reagent]. (In Russian). Available at: //portal.tpu.ru/SHARED/t/TRETYAKOV/Ucheb_rabota/mips/Tab2/Nitrites.pdf (accessed 01.05.2024.).

Znachenie izmenenij metabolizma oksida azota v patogeneze gipertonicheskoj bolezni u bol'nyh starshego vozrasta [The significance of changes in nitric oxide in the pathogenesis of hypertension in elderly patients]. (In Russian). Available at: https://scienceforum.ru/2016/article/2016024598?ysclid=lvo20rasvs455305743 (accessed: 01.05.2024).

Mazhitova M.V. Spektrofotometricheskoe opredelenie urovnya metabolitov monooksida azota v plazme krovi i tkani mozga belyh krys [Spectrophotometric definition of no-metabolites level in blood plasma and the brain fabric of white rats]. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education], 2011, no. 3. (In Russian). Available at: https://science-education.ru/ru/article/view?id=4655 (ac-cessed 10.05.2024).

Загрузки

Опубликован

2024-12-30

Выпуск

Раздел

Биологические науки