Влияние когерентности оптического излучения низкой интенсивности и периодичности его воздействия на активность ферментов эмбрионов радужной форели (Oncorhynchus mykiss, Walbaum, 1792)
Аннотация
В работе приведены результаты исследований по влиянию оптического излучения низкой интенсивности на активность ферментов эмбрионов радужной форели при различных вариантах когерентности и периодичности. Показано, что биологической активностью обладает как поляризованное излучение полупроводникового лазера, так и излучение поляризованного светодиодного источника. На основании приведенных, а также ранее полученных данных сделан вывод, что среди фото-физических процессов резонансной и нерезонансной природы (ориентационное действие света; действие градиентных сил; диполь–дипольные взаимодействия; термооптические процессы), способных вызывать фотобиологические эффекты, зависимые от таких лазероспецифических характеристик, как поляризация и когерентность, определяющее влияние в изучаемых в настоящей работе процессах принадлежит ориентационному действию света и диполь-дипольным взаимодействиям. The paper presents results of studies of the effect of low–intensity optical radiation on the enzymes activity of rainbow trout embryos under various coherence and periodicity variants. It is shown that polarized radiation of semiconductor laser and the polarized radiation of light–emitting diode have a biological activity. Based on the presented data and also on data obtained previously, we conclude that among the resonant and nonresonant photophysical processes (orientational effect of light, effect of gradient forces, dipole–dipole interactions, thermooptic processes) capable of inducing photobiological effects dependent on such laser–specific characteristics as polarization and coherence, the determining influence in the processes studied in this work comes from the orientational effect of light and dipole–dipole interactions. And the orientational effect can appear for anisotropic media with liquid–crystal type ordering (especially domains in membranes and multiple–enzyme complexes) both under conditions when there is no resonant absorption and for weakly absorbing structures, and can initiate a change in their conformations and accordingly their functional characteristics.Библиографические ссылки
Барулин, Н. В. Системный подход к технологии регулирования воспроизводства объектов аквакультуры в рыбоводных индустриальных комплексах / Н. В. Барулин // Весці нацыянальнай
акадэміі навук Беларусі. Серыя аграрных навук. – Минск. – 2015. – № 3. – С. 107 – 111.
Инновационные методы и технологии устойчивого развития аквакультуры в регионе Балтийского моря: монография / Н. Барулин [и др.]. – Минск : Экоперспектива, 2016. – 414 с.
Портная, Т. В. Характер эмбрионального и постэмбрионального развития радужной форели при доинкубации икры в условиях неблагоприятного повышения температуры воды / Т. В. Портная, А. И. Портной, А. А. Сопот // Животноводство и ветеринарная медицина. – 2015. – № 2(17). – С. 26–33.
Рекомендации по выращиванию рыбопосадочного материала радужной форели в рыбоводных индустриальных комплексах (с временными нормативами) / Н. В. Барулин [и др.]. – Горки : БГСХА, 2016. – 179 с.
Плавский, В. Ю. Влияние низкоинтенсивного лазерного облучения икры на жизнестойкость молоди осетровых рыб / В.Ю. Плавский, Н.В. Барулин // Журнал прикладной спектроскопии. – 2008 – Т. 75.– № 2 – С. 233 – 241.
Плавский, В.Ю., Влияние поляризации и когерентности оптического излучения низкой интенсивности на эмбрионы рыб / В.Ю. Плавский, Н.В. Барулин // Журнал прикладной спектроскопи. – 2008. – Т.75 – № 6. – С. 843 – 858.
Effects of direct laser radiation on human lymphocytes/ E.Mester, S. Nagylucskay, W. Waidelich, S. Tisza, P. Greguss, D.Haina, A. Mester//Archives of Dermatological Research. – 1978. – Vol. 263. – no. 3. – Р. 241–245.
Hypothetical physical model for laser biostimulation/ I. Kertesz, M. Fenyö, E. Mester, G. Bathori // Optics and Laser Technology. – Vol. 14. – No.1.– P. 31–32.
Polarized light (400–2000 nm) and non–ablative laser (685 nm): a description of the wound healing process using immunohistochemical analysis / A.L.Pinheiro, D.H. Pozza, M.G. Oliveira, R. Weissmann, L.M. Ramalho // Photomedicine and Laser Surgery. – 2005. – Vol. 23. – No. 5. – P. 485–492.
Verbelen J. Use of polarised light as a method of pressure ulcer prevention in an adult intensive care unit // Journal of Wound Care. – 2007. – Vol. 16. – No. 4. – P. 145–150.
The efficacy of linear polarized polychromatic light on burn wound healing: an experimental study on rats/ C.A. Karadag, M.Birtane, A.C.Aygit, K.Uzunca, L.Doganay // Journal of Burn Care and Research. –
– Vol. 28. – No 2. – P. 291–298.
Tolkachev V.A. Role of Light Polarization in the Optothermal Effect // Applied Spectroscopy. – 2004. – Vol. 71. – No.1. – P. 139–142.
The Role of Coherence in Wound Healing Stimulation by Nonthermal Laser Radiation / J.H.Nicola, E.M.D.Nicola, M.A. Cotta, A.Hengeltraub, J.R.Paschoal // Lasers in Surgery and Medicine. – 1989. – Vol. 2–3. – No. 2. – P. 70.
Kubota J., Ohshiro T. The effects of diode laser low reactive–level laser therapy (LLLT) on flap survival in a rat model // Laser Therapy. – 1989. – Vol. 1. – No. 3. – P. 127–134.
Bihari, I., Mester A. The biostimulative effect of low level laser therapy of long–standing crural ulcer using Helium Neon laser, Helium Neon plus infrared lasers and non coherent light: Preliminary report of a randomized double blind comparative study // Laser Therapy. – 1988. – Vol. 1. – No.1. – P. 97–102.
Berki, T., Németh P. Hegedüs J. Biological effect of low power helium–neon (HeNe) laser irradiation // Lasers in Medical Science. – 1988. – Vol. 3. – No.1–4. – P. 35–39.
Onac, I., Pop, L. Onac, I. Implications of low–power He–Ne laser and monochromatic red light biostimulation in protein and glycoside metabolism // Laser Therapy. – 1999. – Vol. 11. – No. 1. – P. 130–137.
Budagovsky, A.V. On the ability of cells to distinguish the coherence of optical radiation // Quantum Electronics. – 2005.– Vol. 35. – No. 4. – P. 369–374.
Rubinov, A.N. Afanas’ev A.A. Nonresonance mechanisms of biological effects of coherent and incoherent light // Optics and Spectroscopy. – 2005. – Vol. 98. – No. 6. – P. 943–948.
Role of coherence in interaction of opticalradiation with macromolecules/ N.S.Leshenyuk, M.V.Prigun, G.S.Kruglik, N.S.Petrov // Journal of Applied Spectroscopy. – 2006. – Vol. 73. – No. 2. – P. 251–258.
Golovinskii, P.A. Laser–induced conformational transitions in macromolecules // Technical Physics. – 1994. – Vol. 39. – No. 9. – P. 961–962.
Karu, T. Primary and secondary mechanisms of action of visible to near–IR radiation on cells // Journal of Photochemistry and Photobiology B: Biology. – 1999. – Vol. 49. – No.1. – P. 1–17.
Elementary processes in cells after light absorption do not depend on the degree of polarization: implications for the mechanisms of laser phototherapy / T.I. Karu, L.V. Pyatibrat, S.V. Moskvin, S. Andreev, V.S. Letokhov // Photomedicine and Laser Surgery. – 2008. – Vol. 26. – No. 2. - P. 77-82
Molecular and cellular mechanisms triggered by low–level laser irradiation // Yu.A. Vladimirov, G.I.Klebanov, G.G.Borisenko, A.N.Osipov // Biophysics. – 2004. – Vol. 49. – No. 2. – P. 325–336.
A comparative study of the effects of laser and light–emitting diode radiation on the wound healing and functional activity of wound exudate cells / G.I. Klebanov, N.Yu. Shuraeva, T.V. Chichuk, A.N. Osipov, T.G. Rudenko, A.B. Shekhter, Yu.A.Vladimirov // Biophysics. – 2005. – Vol. 50. – No. 6. – P. 980–985.
R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. – Режим доступа: https://www.R–project.org/
Fox, J. The R Commander: A Basic Statistics Graphical User Interface to R // Journal of Statistical Software. – 2005. – Vol. 14. – No. 9. – P. 1–42.
Pohlert, T. 2014. The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR). R package. – Режим доступа: http://CRAN.R–project.org/package=PMCMR>
Dose–Response Analysis Using R / С.Ritz, F.Baty, J.C.Streibig, D.Gerhard // PLOS ONE – 2015. – Vol. 10. – No. 12. – e0146021.
Новиков, Г.Г. Рост и энергетика развития костистых рыб в раннем онтогенезе / Г.Г. Новиков. – М.: Эдиториал УРСС, 2000 – 296 с.
Ritz, C. Towards a unified approach to dose–response modeling in ecotoxicology // Environmental Toxicology and Chemistry. – 2010. – Vol. 29. – P. 220–229.
Шитиков, В.К. Экотоксикология и статистическое моделирование эффекта с использованием R. / В.К. Шитиков – Тольятти: ИЭВБ РАН , 2016. – 149 с.
Озернюк, Н.Д. Адаптационные особенности энергетического метаболизма в онтогенезе рыб. / Н.Д. Озернюк // Онтогенез. – 2001. – Т. 42 – № 3. – С. 235 – 240.
Haagensen, L. Dependence of myosin–ATPase on structure bound creatine kinase in cardiac myfibrils from rainbow trout and freshwater turtle / L. Haagensen, D.H. Jensen, H. Gesser // Comparative
biochemistry and physiology. Part A, Molecular & integrative physiology. – 2008. – Vol. 150. – No. 4. – P. 404–409.
Озернюк, Н.Д. Феноменология и механизмы адаптационных процессов / Н.Д. Озернюк. – М.: МГУ, 2003. – 215 с.
Barulin N. V. Sistemnyi podkhod k tekhnologii regulirovaniia vosproizvodstva ob"ektov akvakul'tury v rybovodnykh industrial'nykh kompleksakh [The system approach to the technology of regulation
of the reproduction of aquaculture objects in fish–breeding industrial complexes]. Vestsі natsyianal'nai akademіі navuk Belarusі. Seryia agrarnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Agrarian Sciences Series], Minsk, 2015, no. 3, pp. 107 – 111. (In Russian)
Barulin N. et al. Innovatsionnye metody i tekhnologii ustoichivogo razvitiia akvakul'tury v regione Baltiiskogo moria [Innovative methods and technologies for sustainable development of aquaculture in the Baltic Sea Region: monograph]. Minsk, Ekoperspektiva Publ., 2016. 414 p. (In Russian)
Portnaia T. V., Portnoi A. I., Sopot A.A. Kharakter embrional'nogo i postembrional'nogo razvitiia raduzhnoi foreli pri doinkubatsii ikry v usloviiakh neblagopriiatnogo povysheniia temperatury vody [The nature of embryonic and postembryonic development of rainbow trout during the pre–incubation of eggs under conditions of an unfavorable rise in the water temperature]. Zhivotnovodstvo i veterinarnaia meditsina
[Livestock and veterinary medicine], 2015, vol. 2, no.17, pp. 26–33. (In Russian)
Barulin N. V. et al. Rekomendatsii po vyrashchivaniiu ryboposadochnogo materiala raduzhnoi foreli v rybovodnykh industrial'nykh kompleksakh (s vremennymi normativami) [Some recommendations for the cultivation of fish–planting material for rainbow trout in hatchery industrial complexes (with temporary standards).]. Gorki : BGSKhA Publ., 2016. 179 p. (In Russian)
Plavskii V.Iu., Barulin N.V. Vliianie nizkointensivnogo lazernogo oblucheniia ikry na zhiznestoikost' molodi osetrovykh ryb [The effect of low–intensity laser irradiation of eggs on the viability of young sturgeons]. Zhurnal prikladnoi spektroskopii [Journal of Applied Spectroscopy], 2008, Vol. 75, no. 2, pp. 233 – 241. (In Russian)
Plavskii V.Iu., Barulin N.V. Vliianie poliarizatsii i kogerentnosti opticheskogo izlucheniia nizkoi intensivnosti na embriony ryb [The influence of polarization and coherence of low–intensity optical radiation on fish embryos]. Zhurnal prikladnoi pektroskopii [Journal of Applied Spectroscopy], 2008, Vol.75, no. 6, pp. 843 – 858. (In Russian)
Mester E., Nagylucskay S., Waidelich W., Tisza S., Greguss P., Haina D., Mester A. Effects of direct laser radiation on human lymphocytes. Archives of Dermatological Research, 1978, Vol. 263, no. 3, pp. 241–245.
Kertesz I., Fenyö M., Mester E., Bathori G. Hypothetical physical model for laser biostimulation. Optics and Laser Technology, 1982, Vol. 14, no.1, pp. 31–32.
Pinheiro A.L., Pozza D.H., Oliveira M.G., Weissmann R., Ramalho L.M. Polarized light (400–2000 nm) and non–ablative laser (685 nm): a description of the wound healing process using immunohistochemical
analysis. Photomedicine and Laser Surgery, 2005, vol. 23, no. 5, pp. 485–492.
Verbelen, J. Use of polarised light as a method of pressure ulcer prevention in an adult intensive care unit. Journal of Wound Care, 2007, Vol. 16, no. 4, pp. 145–150.
Karadag C.A. Birtane M., Aygit A.C., Uzunca K., Doganay L. The efficacy of linear polarized polychromatic light on burn wound healing: an experimental study on rats. Journal of Burn Care and Research, 2007, Vol. 28, no 2, pp. 291–298.
Tolkachev V.A. Role of Light Polarization in the Optothermal Effect. Applied Spectroscopy, 2004, Vol. 71, no.1, pp. 139–142.
Nicola J.H., .Nicola E.M.D, Cotta M.A., Hengeltraub A., Paschoal J.R. The Role of Coherence in Wound Healing Stimulation by Nonthermal Laser Radiation. Lasers in Surgery and Medicine, 1989, Vol. 2–3, no. 2, p. 70.
Kubota J., Ohshiro T. The effects of diode laser low reactive–level laser therapy (LLLT) on flap survival in a rat model. Laser Therapy, 1989, Vol. 1, no. 3, pp. 127–134.
Bihari I., Mester A. The biostimulative effect of low level laser therapy of long–standing crural ulcer using Helium Neon laser, Helium Neon plus infrared lasers and non coherent light: Preliminary report of a randomized double blind comparative study. Laser Therapy, 1988, vol. 1, no.1, pp. 97–102.
Berki T., Németh P. Hegedüs J. Biological effect of low power helium–neon (HeNe) laser irradiation. Lasers in Medical Science, 1988, Vol. 3, no.1–4, pp. 35–39.
Onac I., Pop, L. Onac, I. Implications of low–power He–Ne laser and monochromatic red light biostimulation in protein and glycoside metabolism. Laser Therapy, 1999, vol. 11, no. 1, pp. 130–137.
Budagovsky A.V. On the ability of cells to distinguish the coherence of optical radiation. Quantum Electronics, 2005, Vol. 35, no. 4, pp. 369–374.
Rubinov A.N. Afanas’ev A.A. Nonresonance mechanisms of biological effects of coherent and incoherent light. Optics and Spectroscopy, 2005, Vol. 98, no. 6, pp. 943–948.
Leshenyuk N.S., Prigun M.V., Kruglik G.S., Petrov N.S. Role of coherence in interaction of opticalradiation with macromolecules. Journal of Applied Spectroscopy, 2006, Vol. 73, no. 2, pp. 251–258.
Golovinskii P.A. Laser–induced conformational transitions in macromolecules. Technical Physics, 1994, Vol. 39, no. 9, pp. 961–962.
Karu T. Primary and secondary mechanisms of action of visible to near–IR radiation on cells. Journal of Photochemistry and Photobiology B: Biology, 1999, Vol. 49, no.1, pp. 1–17.
Karu T.I., Pyatibrat L.V., Moskvin S.V., Andreev S., Letokhov V.S. Elementary processes in cells after light absorption do not depend on the degree of polarization: implications for the mechanisms of laser phototherapy. Photomedicine and Laser Surgery, 2008, Vol. 26, no. 2, pp. 77–82.
Vladimirov Yu.A., Klebanov G.I., Borisenko G.G., Osipov A.N. Molecular and cellular mechanisms triggered by low–level laser irradiation. Biophysics, 2004, Vol. 49, no. 2, p. 325–336. (In Rusian)
Klebanov G.I., Shuraeva N.Yu., Chichuk T.V., Osipov A.N., Rudenko T.G., Shekhter A.B., Vladimirov Yu.A. A comparative study of the effects of laser and light–emitting diode radiation on the wound healing and functional activity of wound exudate cells. Biophysics, 2005, Vol. 50, no. 6, pp. 980–985.
R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R–project.org/
Fox J. The R Commander: A Basic Statistics Graphical User Interface to R. Journal of Statistical Software, 2005, Vol. 14, no. 9, pp. 1–42.
Pohlert T. 2014. The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR). R package, available at: http:// CRAN.R-project.org/package=PMCMR>
Ritz С., Baty F., Streibig J.C., Gerhard D. Dose–Response Analysis Using R. PLOS ONE, 2015, Vol. 10, no. 12, e0146021.
Novikov G.G. Rost i energetika razvitiia kostistykh ryb v rannem ontogeneze. [The growth and energy development of teleost fishes in early ontogeny]. Moskow, Editorial URSS Publ., 2000, 296 p. (In Russian)
Ritz C. Towards a unified approach to dose–response modeling in ecotoxicology. Environmental Toxicology and Chemistry, 2010, Vol. 29, pp. 220–229.
Shitikov V.K. Ekotoksikologiia i statisticheskoe modelirovanie effekta s ispol'zovaniem R. [Ecotoxicology and statistical modeling of the effect using R]. Tol'iatti, IEVB RAN, 2016. 149 p. (In Russian)
Ozerniuk N.D. Adaptatsionnye osobennosti energeticheskogo metabolizma v ontogeneze ryb [Adaptive features of energy metabolism in fish ontogeny]. Ontogenez, 2001, Vol. 42, no. 3, pp. 235 – 240. (In Russian)
Haagensen L. Jensen D.H., Gesser H. Dependence of myosin–ATPase on structure bound creatine kinase in cardiac myfibrils from rainbow trout and freshwater turtle. Comparative biochemistry and physiology. Part A. Molecular and integrative physiology, 2008, Vol. 150, no. 4, pp. 404–409.
Ozerniuk N.D. Fenomenologiia i mekhanizmy adaptatsionnykh protsessov [Phenomenology and mechanisms of adaptation processes]. Moskow, Moskovskii gosudarstvennyi universitet Publ., 2003. 215 p. (In Russian)