Транспорт витамина В1 у животных, растений и микроорганизмов

Авторы

  • А.Ф. Макарчиков Гродненский государственный аграрный университет, г. Гродно, Республика Беларусь
  • И.К. Колос Гродненский государственный аграрный университет, г. Гродно, Республика Беларусь

Ключевые слова:

тиамин, транспортеры тиамина, транспортеры тиаминдифосфата, бактерии, дрожжи, растения, животные

Аннотация

Витамин В1 в форме кофермента тиаминдифосфата (ТДФ) необходим для жизнедеятельности практически всех видов организмов. Растения, дрожжи и многие бактерии синтезируют витамин В1 de novo, тогда как клетки животных лишены такой способности и поэтому постоянно должны поглощать тиамин с помощью специализированных транспортных систем. Белки-переносчики экспрессируются не только клетками ауксотрофных по тиамину организмов, но тех, которые способны осуществлять его биосинтез. В ходе биологической эволюции произошла значительная дивергенция механизмов транспорта витамин В1. Прокариоты осуществляют его активный транспорт с помощью АТФ-зависимых транспортеров ABC-типа или используя энергонезависимый механизм облегченной диффузии через транспортер PnuT. В клетки дрожжей и животных тиамин переносится по механизму вторичного активного транспорта белками-транспортерами из семейств NCS1 и SLC19 соответственно. Синтезируемый в цитозоле клеток эукариот ТДФ импортируется в матрикс митохондриий транспортерами, принадлежащими семейству MCF.

Биографии авторов

А.Ф. Макарчиков, Гродненский государственный аграрный университет, г. Гродно, Республика Беларусь

докт. биол. наук, доцент, заведующий кафедрой химии, ведущий научный сотрудник РНИУП «Институт биохимии биологически активных соединений» НАН Беларуси, научный консультант ЧНИУП «Алникор», г. Гродно, Республика Беларусь

И.К. Колос, Гродненский государственный аграрный университет, г. Гродно, Республика Беларусь

канд. биол. наук, доцент кафедры химии

Библиографические ссылки

Макарчиков, А. Ф. Витамин В1: метаболизм и функции / А. Ф. Макарчиков // Биомедицинская химия. – 2009. – Т. 55, вып. 3. – С. 278–297.

Lyme disease spirochaete Borrelia burgdorferi does not require thiamin / K. Zhang [et al.] // Nat. Microbiol. – 2016. – Vol. 2: 16213.

ExplorEnz – The Enzyme Database [Электронный ресурс]. – Режим доступа: https://www.enzyme-database.org. – Дата доступа: 17.03.2023.

Zhao, R. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors / R. Zhao, D.I. Goldman // Mol. Aspects Med. – 2013. – Vol. 34 – P. 373–385.

Макарчиков, А.Ф. Биосинтез тиамина / А.Ф. Макарчиков // Веснік Палескага дзяржаўнага ўніверсітэта. Серыя прыродазнаўчых навук. – 2021, №2. – С. 34–53.

Thiamin transport by human erythrocytes and ghosts / D. Casirola [et al.] // J. Membr. Biol.  1990.  Vol. 118.  P. 1118.

Thiamine transport by basolateral rat liver plasma membrane vesicles / R.H. Moseley [et al.] // Gastroenterology.  1992.  Vol. 103.  P. 10561065.

Evidence for a carrier-mediated mechanism for thiamine transport to human jejunal basolateral membrane vesicles / P.K. Dudeja [et al.] // Dig. Dis. Sci. – 2003. – Vol. 48. – P. 109–115.

Mechanism of thiamine uptake by human jejunal brush-border membrane vesicles / P.K. Dudeja [et al.] // Am. J. Physiol. Cell Physiol. – 2001. – Vol. 281. – P. C786–C792.

Transport of thiamine in rat renal brush-border membrane vesicles / G. Gastaldi [et al.] // Kidney Int.  2000.  Vol. 57.  P. 20432054.

Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations / L. Mee [et al.] // Am. J. Physiol. Gastrointest. Liver Physiol. – 2009. – Vol. 297. – P. G197–206.

Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation / V.S. Subramanian [et al.] // J. Physiol. – 2007. – Vol. 582(Pt 1). – P. 73–85.

Laforenza, U. A thiamine/H+ antiport mechanism for thiamine entry into brush border membrane vesicles from rat small intestine / U. Laforenza, M.N. Orsenigo, G. Rindi // J. Membr. Biol. – 1998. – Vol. 161. – P. 151–161.

Transport of thiamine in rat renal brush-border membrane vesicles / G. Gastaldi [et al.] // Kidney Int.  2000.  Vol. 57.  P. 20432054.

Blood-brain transport of thiamine monophosphate in the rat: a kinetic study in vivo / C. Patrini [et al.] // J. Neurochem.  1988.  Vol. 50.  P. 9093.

Reggiani, C. Nervous tissue metabolism in vivo. I. Transport of thiamine and thiamine monophosphate from plasma to different brain regions of the rat / C. Reggiani, C. Patrini, G. Ringi // Brain Res.  1984.  Vol. 293.  P. 319327.

Greenwood, J. Kinetics of thiamine transport across the blood-brain barrier in the rat / J. Greenwood, E.R. Love, O.E. Pratt // J. Physiol. – 1982. – Vol. 327. – P. 95–103.

Lockman, P.R. Evaluation of blood-brain barrier thiamine efflux using the in situ rat brain perfusion method / P.R. Lockman, R.J. Mumper, D.D. Allen // J. Neurochem. – 2003. – Vol. 86. – P. 627–634.

Cloning of the human thiamine transporter, a member of the folate transporter family / B. Dutta [et al.] // J. Biol. Chem. – 1999. – Vol. 274. – P. 31925–31929.

Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes / J.D. Eudy [et al.] // Mol. Genet. Metab. – 2000. – Vol. 71. – P. 581–590.

Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine / H.M. Said [et al.] // Am. J. Physiol. Gastrointest. Liver Physiol. – 2004. – Vol. 286. – P. G491–G498.

Posttranscriptional regulation of thiamin transporter-1 expression by microRNA-200a-3p in pancreatic acinar cells / K. Ramamoorthy [et al.] // Am. J. Physiol. Gastrointest. Liver Physiol. – 2020. – Vol. 319. – P. G323–G332.

Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness / V. Labay [et al.] // Nat. Genet. 1999.  Vol. 22.  P. 300304.

Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3 / W.Q. Zeng [et al.] // Am. J. Hum. Genet. – 2005. – Vol. 77. – P. 16–26.

Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy / S.H. Kevelam [et al.] // Brain. – 2013. – Vol. 136. – P. 1534–1543.

Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy / S. Kono [et al.] // N. Engl. J. Med. – 2009. – Vol. 360. – P. 1792–1794.

Interaction of 2,4-diaminopyrimidine-containing drugs including fedratinib and trimethoprim with thiamine transporters / M.M. Giacomini [et al.] // Drug Metab. Dispos. – 2017. – Vol. 45. – P. 76–85.

pH-dependent pyridoxine transport by SLC19A2 and SLC19A3: Implications for absorption in acidic microclimates / T. Yamashiro [et al.] // J. Biol. Chem. – 2020. – Vol. 295. – P. 16998–17008.

Yamashiro, T. Animal species differences in the pyridoxine transport function of SLC19A3: Absence of Slc19a3-mediated pyridoxine uptake in the rat small intestine / T. Yamashiro, T. Yasujima, H. Yuasa // Drug Metab. Pharmacokinet. – 2022. – Vol. 44:100456.

Identification of the amino acid residues involved in the species-dependent differences in the pyridoxine transport function of SLC19A3 / K. Miyake [et al.] // J. Biol. Chem. – 2022. – Vol. 298: 102161.

Zhao, R. Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells / R. Zhao, F. Gao, I.D. Goldman // Am. J. Physiol. Cell Physiol. – 2002. – Vol. 282. – P. C1512–1517.

Thiamine is a substrate of organic cation transporters in Caco-2 cells / C. Lemos [et al.] // Eur. J. Pharmacol. – 2012. – Vol. 682. – P. 37–42.

OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin / L. Chen [et al.] // Proc. Natl. Acad. Sci. USA. – 2014. – Vol. 111. – P. 9983–9988.

Involvement of organic cation transporters in the clearance and milk secretion of thiamine in mice / K. Kato [et al.] // Pharm. Res. – 2015. – Vol. 32. – P. 2192–2204.

Jaehme, M. Diversity of membrane transport proteins for vitamins in bacteria and archaea / M. Jaehme, D.J. Slotboom // Biochim. Biophys. Acta. – 2014. – Vol. 1850. – P. 565–576.

Hollenbach, A.D. Thiamine transport in Escherichia coli: the mechanism of inhibition by the sulfhydryl-specific modifier N-ethylmaleimide / A.D. Hollenbach, K.A. Dickson, M.W. Washabaugh // Biochim. Biophys. Acta. – 2002. – Vol. 1564. – P. 421–428.

Webb, E. ThiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium / E. Webb, K. Claas, D. Downs // J. Biol. Chem. – 1998. – Vol. 273. – P. 8946–8950.

Hollenbach, A.D. Overexpression, purification, and characterization of the periplasmic space thiamin-binding protein of the thiamin traffic ATPase in Escherichia coli / A.D. Hollenbach, K.A. Dickson, M.W. Washabaugh // Protein. Expr. Purif. –2002. – Vol. 25. – P. 508–518.

Goodsell, D.S. Integrative illustration of a JCVI-syn3A minimal cell / D.S. Goodsell // J. Integr. Bioinform. – 2022. – Vol. 19(2): 20220013.

The riboswitch regulates a thiamine pyrophosphate ABC transporter of the oral spirochete Treponema denticola / J. Bian [et al.] // J. Bacteriol. – 2011. – Vol. 193. – P. 3912–3922.

A novel class of modular transporters for vitamins in prokaryotes / D.A. Rodionov [et al.] // J. Bacteriol. – 2009. – Vol. 191. – P. 42–51.

Crystal structure of a group I energy coupling factor vitamin transporter S component in complex with its cognate substrate / I. Josts [et al.] // Cell Chem. Biol. – 2016. – Vol. 23. – P. 827–836.

The structural basis of modularity in ECF-type ABC transporters / G.B. Erkens [et al.] // Nat. Struct. Mol. Biol. – 2011. – Vol. 18. – P. 755–760.

Erkens, G.B. Biochemical characterization of ThiT from Lactococcus lactis: a thiamin transporter with picomolar substrate binding affinity / G.B. Erkens, D.J. Slotboom // Biochemistry. – 2010. – Vol. 49. – P. 3203–3212.

Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions / T. Eitinger [et al.] // FEMS Microbiol. Rev. – 2011. – Vol. 35. – P. 3–67.

Jaehme, M. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters / M. Jaehme, D.J. Slotboom // Biol. Chem. – 2015. – Vol. 396. – P. 955–966.

PnuT uses a facilitated diffusion mechanism for thiamine uptake / M. Jaehme [et al.] // J. Gen. Physiol. – 2018. – Vol. 150. – P. 41–50.

Thiamin transport in Helicobacter pylori lacking the de novo synthesis of thiamin / K. Nosaka [et al.] // Microbiology. – 2019. – Vol. 165. – P. 224–232.

Comparative genomics and functional analysis of the NiaP family uncover nicotinate transporters from bacteria, plants, and mammals / L. Jeanguenin [et al.] // Funct. Integr. Genom. – 2012. – Vol. 12. – P. 25–34.

Iwashima, A. Carrier-mediated transport of thiamine in baker’s yeast / A. Iwashima, H. Nishino, Y. Nose // Biochim. Biophys. Acta. – 1973. – Vol. 330. – P. 222–234.

Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae / F. Enjo [et al.] // J. Biol. Chem. – 1997. – Vol. 272. – P. 19165–19170.

Characterization of Thi9, a novel thiamine (Vitamin B1) transporter from Schizosaccharomyces pombe / C. Vogl [et al.] // J. Biol. Chem. – 2008. – Vol. 283. – P. 7379–7389.

Identification and characterization of thiamin repressible acid phosphatase in yeast / M.E. Schweingruber [et al.] // J. Biol. Chem. – 1986. – Vol. 261. – P. 15877–15882.

Nosaka, K. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates / K. Nosaka // Biochim. Biophys. Acta. – 1990. – Vol. 1037. – P. 147–154.

Ahn, I.P. Vitamin B1 functions as an activator of plant disease resistance / I.P. Ahn, S. Kim, Y.H. Lee // Plant Physiol. – 2005. – Vol. 138. – P. 1505–1515.

Long-distance transport of thiamine (vitamin B1) is concomitant with that of polyamines / J. Martinis [et al.] // Plant Physiol. – 2016. – Vol. 171. – P. 542–553.

Inability of thiamine phosphates transport in isolated rat hepatocyte / K. Yoshioka [et al.] // Experientia. – 1983. – Vol. 39. – P. 505–507.

Nosaka, K. Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae / K. Nosaka, H. Nishimura, A. Iwashima // Yeast. – 1989. – Vol. 5(Spec No). – S447–451.

Thiamine pyrophosphate biosynthesis and transport in the nematode Caenorhabditis elegans / L. De Jong [et al.] // Genetics. – 2004. – Vol. 168. – P. 845–854.

Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter/ S.M. Nabokina [et al.] // J. Biol. Chem. – 2014. – Vol. 289. – P. 4405–4416.

Barile, M. Thiamine pyrophosphate uptake into isolated rat liver mitochondria / M. Barile, S. Passarella, E. Quagliariello // Arch. Biochem. Biophys. – 1990. – Vol. 280. – P. 352–357.

Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects / V.S. Subramanian [et al.] // PLoS One. – 2013. – Vol. 8(8): e73503.

Song, Q. Mitochondria from cultured cells derived from normal and thiamine-responsive megaloblastic anemia individuals efficiently import thiamine diphosphate / Q. Song, C.K. Singleton // BMC Biochem. – 2002. – Vol. 3: 8.

Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate / C.M. Marobbio [et al.] // EMBO J. – 2002. – Vol. 21. – P. 5653–5661.

The mitochondrial thiamine pyrophosphate transporter TptA promotes adaptation to low iron conditions and virulence in fungal pathogen Aspergillus fumigatus / J. Huang [et al.] // Virulence. – 2019. – Vol. 10. – P. 234–247.

Mutant deoxynucleotide carrier is associated with congenital microcephaly / M.J. Rosenberg [et al.] // Nat. Genet. – 2002. – Vol. 32. – P. 175–179.

Identifcation and functional analysis of novel SLC25A19 variants causing thiamine metabolism dysfunction syndrome 4 / Y. Chen [et al.] // Orphanet J. Rare Dis. – 2021. – Vol. 16: 403.

The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from Drosophila melanogaster / D. Iacopetta [et al.] // FEBS J. – 2010. – Vol. 277. – P. 1172–1181.

Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize / O. Frelin [et al.] // Funct. Integr. Genomics. – 2012. – Vol. 12. – P. 317–326.

Presence of thiamine pyrophosphate in mammalian peroxisomes / P. Fraccascia [et al.] // BMC Biochem. – 2007. – Vol. 8:10.

References

Makarchikov A.F. Vitamin B1: metabolism and functions. Biochemistry (Moscow). Suppl. Ser. B: Biomed. Chem., 2009, vol. 3, pp. 116–128.

Zhang K., Bian J., Deng Y., Smith A., Nunez R.E., Li M.B., Pal U., Yu A.-M., Qiu W., Ealick S.E., Li C. Lyme disease spirochaete Borrelia burgdorferi does not require thiamin. Nat. Microbiol. 2016, vol. 2: 16213.

ExplorEnz – The Enzyme Database. Available at: https://www.enzyme-database.org. (accessed: 09.09.2022).

Zhao R., Goldman D.I. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol. Aspects Med., 2013, vol. 34, pp. 373–385.

Makarchikov A.F. Biosintez tiamina. Vesnik Paleskaga dziaržaunaga universiteta. Seryja pryrodazhauchyh navuk, 2021, №2, pp. 34–53.

Casirola D., Patrini C., Ferrari G., Rindi G. Thiamin transport by human erythrocytes and ghosts J. Membr. Biol., 1990, vol. 118, pp. 1118.

Moseley R.H., Vashi P.G., Jarose S.M., Dickinson C.J., Permoad P.A. Thiamine transport by basolateral rat liver plasma membrane vesicles. Gastroenterology, 1992, vol. 103, pp. 10561065.

Dudeja P.K., Tyagi S., Gill R., Said H.M. Evidence for a carrier-mediated mechanism for thiamine transport to human jejunal basolateral membrane vesicles. Dig. Dis. Sci., 2003, vol. 48, pp. 109–115.

Laforenza U., Orsenigo M.N., Rindi G. A thiamine/H+ antiport mechanism for thiamine entry into brush border membrane vesicles from rat small intestine. J. Membr. Biol., 1998, vol. 161, pp. 151–161.

Dudeja P.K., Tyagi S., Kavilaveettil R.J., Gill R., Said H.M. Mechanism of thiamine uptake by human jejunal brush-border membrane vesicles. Am. J. Physiol. Cell Physiol., 2001, vol. 281, pp. C786–C792.

Gastaldi G., Cova E., Verri A., Laforenza U., Faelli A., Rindi G. Transport of thiamin in rat renal brush-border membrane vesicles. Kidney Int., 2000, vol. 57, pp. 20432054.

Mee L., Nabokina S.M., Sekar V.T., Subramanian V.S., Maedler K., Said H.M. Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, vol. 297, pp. G197–206.

Subramanian V.S., Mohammed Z.M., Molina A., Marchant J.S., Vaziri N.D., Said H.M. Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation. J. Physiol., 2007, vol. 582(Pt 1), pp. 73–85.

Patrini C., Reggiani C., Laforenza U., Rindi G. Blood-brain transport of thiamine monophosphate in the rat: a kinetic study in vivo. J. Neurochem., 1988, vol. 50, pp. 9093.

Reggiani C., Patrini C., Rindi G. Nervous tissue metabolism in vivo. I. Transport of thiamine and thiamine monophosphate from plasma to different brain regions of the rat. Brain Res., 1984, vol. 293, pp. 319327.

Greenwood J., Love E.R., Pratt O.E. Kinetics of thiamine transport across the blood-brain barrier in the rat. J. Physiol., 1982, vol. 327, pp. 95–103.

Lockman P.R., Mumper R.J., Allen D.D. Evaluation of blood-brain barrier thiamine efflux using the in situ rat brain perfusion method. J. Neurochem., 2003, vol. 86, pp. 627–634.

Dutta B., Huang W., Molero M., Kekuda R., Leibach F.H., Devoe L.D., Ganapathy V., Prasad P.D. Cloning of the human thiamine transporter, a member of the folate transporter family. J. Biol. Chem., 1999, vol. 274, pp. 31925–31929.

Eudy J.D., Spiegelstein O., Barber R.C., Wlodarczyk B.J., Talbot J., Finnell R.H. Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes. Mol. Genet. Metab., 2000, vol. 71, pp. 581–590.

Said H.M., Balamurugan K., Subramanian V.S., Marchant J.S. Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, vol. 286, pp. G491–G498.

Boulware M.J., Subramanian V.S., Said H.M., Marchant J.S. Polarized expression of members of the solute carrier SLC19A gene family of water-soluble multivitamin transporters: implications for physiological function. Biochem. J., 2003, vol. 376, pp. 43–48.

Ramamoorthy K., Anandam K.Y., Yasujima T., Srinivasan P., Said H.M. Posttranscriptional regulation of thiamin transporter-1 expression by microRNA-200a-3p in pancreatic acinar cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, vol. 319, pp. G323–G332.

Labay V., Raz T., Baron D., Mandel H., Williams H., Barrett T., Szargel R., McDonald L., Shalata A., Nosaka K., Gregory S., Cohen N. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat. Genet., 1999, vol. 22, pp. 300304.

Zeng W.Q., Al-Yamani E., Acierno Jr. J.S., Slaugenhaupt S., Gillis T., MacDonald M.E., Ozand P.T., Gusella J.F. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am. J. Hum. Genet., 2005, vol. 77, pp. 16–26.

Kevelam S.H., Bugiani M., Salomons G.S., Feigenbaum A., Blaser S., Prasad C., Häberle J., Baric I., Bakker I.M.C., Postma N,L., Kanhai W.A., Wolf N.I, Abbink T.E.M., Waisfisz Q., Heutink P., Van der Knaap M.S. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain, 2013, vol. 136, pp. 1534–1543.

Kono S., Miyajima H., Yoshida K., Togawa A., Shirakawa K,, Suzuki H. Mutations in a thiamine-transporter gene and Wernicke's-like encephalopathy. N. Engl. J. Med., 2009, vol. 360, pp. 1792–1794.

Giacomini M.M., Hao J., Liang X., Chandrasekhar J., Twelves J., Whitney J.A., Lepist E.-I., Ray A.S. Interaction of 2,4-diaminopyrimidine-containing drugs including fedratinib and trimethoprim with thiamine transporters. Drug Metab. Dispos., 2017, vol. 45, pp. 76–85.

Yamashiro T., Yasujima T., Said H.M., Yuasa H. pH-dependent pyridoxine transport by SLC19A2 and SLC19A3: Implications for absorption in acidic microclimates. J. Biol. Chem., 2020, vol. 295, pp. 16998–17008.

Yamashiro T., Yasujima T., Yuasa H. Animal species differences in the pyridoxine transport function of SLC19A3: Absence of Slc19a3-mediated pyridoxine uptake in the rat small intestine. Drug Metab. Pharmacokinet., 2022, vol. 44:100456.

Miyake K., Yasujima T., Takahashi S., Yamashiro T., Yuasa H. Identification of the amino acid residues involved in the species-dependent differences in the pyridoxine transport function of SLC19A3. J. Biol. Chem., 2022, vol. 298: 102161.

Zhao R., Gao F., Goldman I.D. Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. Am. J. Physiol. Cell Physiol., 2002, vol. 282, pp. C1512–1517.

Lemos C., Faria A., Meireles M., Martel F., Monteiro R., Calhau C. Thiamine is a substrate of organic cation transporters in Caco-2 cells. Eur. J. Pharmacol., 2012, vol. 682, pp. 37–42.

Chen L., Shua Y., Lianga X., Chena E.C., Yeea S.W., Zura A.A., Lia S., Xua L., Kesharic K.R., Lina M.J., Chiena H.-C., Zhanga Y., Morrisseya K.M., Liud J., Ostreme J., Youngere N.S., Kurhanewiczc J., Shokate K.M., Ashrafid K., Giacomini K.M. OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 9983–9988.

Kato K., Moriyama C., Ito N., Zhang X., Hachiuma K., Hagima N., Iwata K., Yamaguchi J.-i., Maeda K., Ito K., Suzuki H., Sugiyama Y., Kusuhara H. Involvement of organic cation transporters in the clearance and milk secretion of thiamine in mice. Pharm. Res., 2015, vol. 32, pp. 2192–2204.

Jaehme M., Slotboom D.J. Diversity of membrane transport proteins for vitamins in bacteria and archaea. Biochim. Biophys. Acta., 2014, vol. 1850, pp. 565–576.

Hollenbach A.D., Dickson K.A., Washabaugh M.W. Thiamine transport in Escherichia coli: the mechanism of inhibition by the sulfhydryl-specific modifier N-ethylmaleimide. Biochim. Biophys. Acta., 2002, vol. 1564, pp. 421–428.

Webb E., Claas K., Downs D. ThiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium. J. Biol. Chem., 1998, vol. 273, pp. 8946–8950.

Hollenbach A.D., Dickson K.A., Washabaugh M.W. Overexpression, purification, and characterization of the periplasmic space thiamin-binding protein of the thiamin traffic ATPase in Escherichia coli. Protein. Expr. Purif., 2002, vol. 25, pp. 508–518.

Goodsell D.S. Integrative illustration of a JCVI-syn3A minimal cell. J. Integr. Bioinform., 2022, vol. 19(2): 20220013.

Bian J., Shen H., Tu Y., Yu A., Lu C. The riboswitch regulates a thiamine pyrophosphate ABC transporter of the oral spirochete Treponema denticola. J. Bacteriol., 2011, vol. 193, pp. 3912–3922.

Rodionov D.A., Hebbeln P., Eudes A., ter Beek J., Rodionova I.A.,1 Erkens G.B., Slotboom D.J., Gelfand M.S., Osterman A.L., Hanson A.D., Eitinger T. A novel class of modular transporters for vitamins in prokaryotes. J. Bacteriol. 2009, vol. 191, pp. 42–51.

Josts I., Hernandez Y.A., Andreeva A., Tidow H. Crystal structure of a group I energy coupling factor vitamin transporter S component in complex with its cognate substrate. Cell Chem. Biol., 2016, vol. 23, pp. 827–836.

Erkens G.B., Berntsson R.P.-A., Fulyani F., Majsnerowska M., Vujičić-Žagar A., ter Beek J., Poolman B., Slotboom D.J. The structural basis of modularity in ECF-type ABC transporters. Nat. Struct. Mol. Biol., 2011, vol. 18, pp. 755–760.

Erkens G.B., Slotboom D.J. Biochemical characterization of ThiT from Lactococcus lactis: a thiamin transporter with picomolar substrate binding affinity. Biochemistry, 2010, vol. 49, pp. 3203–3212.

Eitinger T., Rodionov D.A., Grote A., Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol. Rev., 2011, vol. 35, pp. 3–67.

Jaehme, M., Slotboom, D.J. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters. Biol. Chem., 2015, vol. 396. pp. 955–966.

Jaehme M., Singh R., Garaeva A.A., Duurkens R.H., Slotboom D.J. PnuT uses a facilitated diffusion mechanism for thiamine uptake. J. Gen. Physiol., 2018, vol. 150, pp. 41–50.

Nosaka K., Uchiyama R., Tadano K., Endo Y., Hayashi M., Konno H., Mimuro H. Thiamin transport in Helicobacter pylori lacking the de novo synthesis of thiamin. Microbiology, 2019, vol. 165, pp. 224–232.

Jeanguenin L., Lara-Núñez A., Rodionov D.A., Osterman A.L., Komarova N.Y., Rentsch D., Gregory J.F. 3rd, Hanson A.D. Comparative genomics and functional analysis of the NiaP family uncover nicotinate transporters from bacteria, plants, and mammals. Funct. Integr. Genom., 2012, vol. 12, pp. 25–34.

Iwashima A., Nishino H., Nose Y. Carrier-mediated transport of thiamine in baker’s yeast. Biochim. Biophys. Acta, 1973, vol. 330, pp. 222–234.

Enjo F., Nosaka K., Ogata M., Iwashima A., Nishimura H. Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae. J. Biol. Chem., 1997, Vol. 272, pp. 19165–19170.

Vogl C., Klein C.M., Batke A.F., Schweingruber M.E., Stolz J. Characterization of Thi9, a novel thiamine (Vitamin B1) transporter from Schizosaccharomyces pombe. J. Biol. Chem., 2008, vol. 283, pp. 7379–7389.

Schweingruber M.E., Fluris R., Maundrelly K., Schweingrubers A.-M., Dumermuth E. Identification and characterization of thiamin repressible acid phosphatase in yeast. J. Biol. Chem., 1986, vol. 261, pp. 15877–15882.

Nosaka K. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates. Biochim. Biophys. Acta, 1990, vol. 1037, pp. 147–154.

Ahn I.P., Kim S., Lee Y.H. Vitamin B1 functions as an activator of plant disease resistance, Plant Physiol., 2005, vol. 138, pp. 1505–1515.

Martinis J., Gas-Pascual E., Szydlowski N., Crèvecoeur M., Gisler A., Bürkle L., Fitzpatrick T.B. Long-distance transport of thiamine (vitamin B1) is concomitant with that of polyamines. Plant Physiol., 2016, vol. 171, pp. 542–553.

Yoshioka K., Nishimura H., Sempuku K., Iwashima A. Inability of thiamine phosphates transport in isolated rat hepatocyte. Experientia, 1983, vol. 39, pp. 505–507.

Nosaka K., Nishimura H., Iwashima A. Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae. Yeast, 1989, vol. 5(Spec No), pp. S447–451.

de Jong L., Meng Y., Dent J., Hekimi S. Thiamine pyrophosphate biosynthesis and transport in the nematode Caenorhabditis elegans. Genetics, 2004, vol. 168, pp. 845–854.

Nabokina S.M., Inoue K., Subramanian V.S., Valle J.E., Yuasa H., Said H.M. Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter. J. Biol. Chem., 2014, vol. 289, pp. 4405–4416.

Barile M., Passarella S., Quagliariello E. Thiamine pyrophosphate uptake into isolated rat liver mitochondria. Arch. Biochem. Biophys., 1990, vol. 280, pp. 352–357.

Subramanian V.S. Nabokina S.M., Lin-Moshier Y., Marchant J.S., Said H.M. Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects. PLoS One, 2013, vol. 8(8): e73503.

Song, Q., Singleton C.K. Mitochondria from cultured cells derived from normal and thiamine-responsive megaloblastic anemia individuals efficiently import thiamine diphosphate. BMC Biochem., 2002, vol. 3: 8.

Marobbio C.M., Vozza A., Harding M., Bisaccia F., Palmieri F., Walker J.E. Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. EMBO J, 2002, vol. 21, pp. 5653–5661.

The mitochondrial thiamine pyrophosphate transporter TptA promotes adaptation to low iron conditions and virulence in fungal pathogen Aspergillus fumigatus / Huang J., Ma Z., Zhong G., Sheppard D.C., Lu L., Zhang S. Virulence, 2019, vol. 10, pp. 234–247.

Rosenberg M.J., Agarwala R., Bouffard G., Davis J., Fiermonte G., Hilliard M.S., Koch T., Kalikin L.M., Makalowska I., Morton D.H., Petty E.M., Weber J.L., Palmieri F., Kelley R.I., Schäffer A.A., Biesecker L.G. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat. Genet., 2002, vol. 32, pp. 175–179.

Chen Y., Fang B., Hu X., Guo R., Guo J., Fang K., Ni J., Li W., Qian S., Hao C. Identifcation and functional analysis of novel SLC25A19 variants causing thiamine metabolism dysfunction syndrome 4. Orphanet J. Rare Dis., 2021, vol. 16: 403.

Iacopetta D., Carrisi C., De Filippis G., Calcagnile V.M., Cappello A.R., Chimento A., Curcio R., Santoro A., Vozza A., Dolce V., Palmieri F., Capobianco L. The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from Drosophila melanogaster. FEBS J., 2010, vol. 277. pp. 1172–1181.

Frelin O., Agrimi G., Laera V.L., Castegna A., Richardson L.G.L., Mullen R.T., Lerma-Ortiz C., Palmieri F., Hanson A.D. Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize. Funct. Integr. Genomics, 2012, vol. 12, pp. 317–326.

Fraccascia P., Sniekers M., Casteels M., Van Veldhoven P.P. Presence of thiamine pyrophosphate in mammalian peroxisomes. BMC Biochem., 2007, vol. 8:1.

Загрузки

Опубликован

2023-06-12

Выпуск

Раздел

Биологические науки