The role of endogenous and exogenous antioxidants in protecting the skin from the negative effects of exposome

Authors

  • V.A. Kostyuk Belarusian State University, Minsk, Republic of Belarus

Keywords:

skin, exposome, antioxidants, reactive oxygen species, oxidative stress

Abstract

Human skin forms the external barrier of the body, which protects us from the effects of the exposome, which is understood as the entire set of external influences on the body. The most important role in the implementation of the protective function of the skin is played by endogenous antioxidants of various structure and chemical properties. An increase in the negative effect of the exposome leads to the fact that endogenous antioxidants are unable to completely prevent the development of oxidative stress and the resulting structural and functional disorders in the skin. Strengthening the antioxidant status of the skin as a result of the topical and systemic (as nutrients) use of exogenous antioxidants is considered as a promising strategy for the prevention of skin diseases.

Author Biography

V.A. Kostyuk, Belarusian State University, Minsk, Republic of Belarus

Doctor of Chem. Sc. Habil., Associate Professor, Chief of the Research Laboratory of Physiology

References

Krutmann, J. The skin aging exposome / J. Krutmann, A. Bouloc, G. Sore [et al.] // J. Dermatol. Sci. – 2017. – Vol. 85. – P. 152–161. DOI: 10.1016/j.jdermsci.2016.09.015.

Lei, Y. Skin premature aging induced by tobacco smoking: the objective evidence of skin replica analysis / Y. Lei, A. Morita, T. Tsuji // J. Dermatol. Sci. – 2001. – Vol. 27. – P. 26–31.

Gilchrest, B.A. Photoaging / B.A. Gilchrest // J. Invest. Dermatol. – 2013. – Vol. 133. – E. 2–6. DOI: 10.1038/skinbio.2013.176.

Kim, K.H. A review on the human health impact of airborne particulate matter / K.H. Kim, E. Kabir, S. Kabir // Environ. Int. – 2015. – Vol. 74. – P. 136–143. DOI: 10.1016/j.envint.2014.10.005.

Nakamura, M. Environment-induced lentigines: formation of solar lentigines beyond ultraviolet radiation / M. Nakamura, A. Morita, S. Seite [et al.] // Exp. Dermatol. – 2015. – Vol. 24. – P. 407–411. DOI: 10.1111/exd.12690.

Chang, A.L.S. Expanding our understanding of human skin aging / A.L.S. Chang // J. Invest. Dermatol. – 2016. – Vol. 136. – P. 897e899. DOI:10.1016/j.jid.2016.02.020.

Petruk, G. Antioxidants from Plants Protect against Skin Photoaging / G. Petruk, R. Del Giudice, M.M. Rigano [et al.] // Oxid. Med. Cell. Longev. – 2018. –Vol. 2018. – ID 1454936. DOI:10.1155/2018/1454936.

Krämer, U. Eczema, respiratory allergies, and traffic-related air pollution in birth cohorts from small-town areas / U. Krämer, D. Sugiri, U. Ranft [et al.] // J. Dermatol. Sci. – 2009. Vol. 56. – P. 99–105.

Krutmann, J. Pollution and skin: from epidemiological and mechanistic studies to clinical implications / J. Krutmann, W. Liu, L. Li [et al.] // J. Dermatol. Sci. – 2014. – Vol. 76. – P. 163–168. DOI:10.1016/j.jdermsci.2014.08.008.

Kim, K.E. Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases / K.E. Kim, D. Cho, H.J. Park // Life Sciences. – 2016. – Vol. 152. – P. 126–134. DOI: 10.1016/j.lfs.2016.03.039.

Miller, D.L. Nonmelanoma skin cancer in the United States: incidence / D.L. Miller, M.A. Weinstock // J. Am. Acad. Dermatol. – 1994. – Vol. –30. – P. 774–778. DOI: 10.1016/s0190-9622(08)81509-5.

de Gruijl, F.R. Skin cancer and solar UV radiation / F.R. de Gruijl // Eur. J. Cancer. – 1999. – Vol. 35. – P. 2003–2009. DOI: 10.1016/s0959-8049(99)00283-x.

Loomis, D. The carcinogenicity of outdoor air pollution / D. Loomis, Y. Grosse, B. Lauby-Secretan [et al.] // Lancet Oncol. – 2013. – Vol. 14. – P. 1262–1263. DOI: 10.1016/s1470-2045(13)70487-x.

Ichihashi, M. UV-induced skin damage / M. Ichihashi, M. Ueda, A. Budiyanto [et al.] // Toxicology. – 2003. – Vol. 189, N 1–2. – P. 21–39. DOI: 10.1016/s0300-483x(03)00150-1.

Brinker, T.J. Dermatologist's ammunition in the war against smoking: a photoaging app / T.J Brinker, A. Enk, M. Gatzka [et al.] // J. Med. Internet. Res. – 2017. – Vol. 19, N 9. – P. e326. DOI: 10.2196/jmir.8743.

Misery, L. Comparative study of stress and quality of life in outpatients consulting for different dermatoses in 5 academic departments of dermatology / L. Misery, L. Thomas, D. Jullien [et al.] // Eur. J. Dermatol. – 2008. – Vol. 18, N 4. – P. 412–415. DOI: 10.1684/ejd.2008.0466.

Mancebo, S.E. Recognizing the impact of ambient air pollution on skin health / S.E. Mancebo, S.Q. Wang // J. Eur. Acad. Dermatol. Venereol. – 2015. – Vol. 29, N 12. – P. 2326–2332. DOI: 10.1111/jdv.13250.

Petruk, G.Antioxidants from Plants Protect against Skin Photoaging. / G. Petruk, R. Del Giudice, M.M. Rigano [et al.] // Oxid. Med. Cell. Longev. – 2018. – ID1454936. – 11 p. DOI.org/10.1155/2018/1454936.

Potapovich, A.I. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFκB and AhR and EGFR-ERK pathway / A.I. Potapovich, D. Lulli, P. Fidanza [et al.] // Toxicol. Appl. Pharmacol. – 2011. – Vol. 255, N 2. – P. 138–149. DOI: 10.1016/j.taap.2011.06.007.

Pastore, S. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system / S. Pastore, A.I. Potapovich, D. Lulli [et al.] // Antioxid. Redox. Signal. – 2011. – Vol. 16, N 4. –P. 314–328. DOI:10.1089/ars.2011.4053.

Jacob, R. Three eras of vitamin C discovery / R. Jacob // Subcell. Biochem. – 1996. – Vol. 25. – P. 1–16.

Knight, J. Free radicals: their history and current status in aging and disease. / J. Knight // Ann. Clin. Lab. Sci. – 1998. – Vol. 28. – P. 331–346.

Halliwell, B. Free radicals in biology and medicine / B. Halliwell, J. Gutteridge // free radicals in biology and medicine / eds. B. Halliwell, J. Gutteridge. – 3rd Edition, Oxford University Press, Oxford, 1999. – P. 1– 25.

Kostyuk, V.A. Mechanisms of the suppression of free radical overproduction by antioxidants / V.A. Kostyuk, A.I. Potapovich // Front. Biosci. (Elite Ed). – 2009. – Vol. 1. – P. 179-188. DOI: 10.2741/E17.

Reuter, S. Oxidative stress, inflammation, and cancer: How are they linked? / S. Reuter, S.C. Gupta, M.M. Chaturvedi [et al.] // Free Radic. Biol. Med. – 2010. – Vol. 49, N 11. – P. 1603–1616. DOI: 10.1016/j.freeradbiomed.2010.09.006.

Lee, J.H. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression / J.H Lee, T.O. Khor, L. Shu [et al.] // Pharmacol. Ther. – 2013. – Vol. 137, N 2. – P. 153–171. DOI: 10.1016/j.pharmthera.2012.09.008.

Godic, A. The role of antioxidants in skin cancer prevention and treatment / A. Godic, B. Poljšak, M. Adamic [et al.] // Oxidative Medicine and Cellular Longevity. – 2014. – Vol. 2014. – 6 p. – ID 860479. https://doi.org/10.1155/2014/860479.

Nosrati, N. Molecular Mechanisms and Pathways as Targets for Cancer Prevention and Progression with Dietary Compounds / N. Nosrati, M. Bakovic, G. Paliyath // Int. J. Mol. Sci. – 2017. – Vol. 18, N 10. – P. E2050. DOI: 10.3390/ijms18102050.

Maitra, D. Destruction of biological tetrapyrrole macrocycles by hypochlorous acid and its scavenging by lycopene / D. Maitra // Wayne State University Dissertations. – 2011. – 357 p. https://digitalcommons.wayne.edu/oa_dissertations/357.

Amić, A. The 2H+/2e− free radical scavenging mechanisms of uric acid: thermodynamics of NH bond cleavage / A. Amić, Z. Marković, J.M. Dimitrić Marković [et al.] // Comput. Theor. Chem. – 2016. – Vol. 1077. – P. 2–10. DOI:10.1016/j.comptc.2015.09.003.

Marchette, L.D. Carcinine has 4-hydroxynonenal scavenging property and neuroprotective effect in mouse retina / L.D. Marchette, H. Wang, F. Li [et al.] // Invest. Ophthalmol. Vis. Sci. – 2012. – Vol. 53, N 7. – P. 3572–3583. DOI:10.1167/iovs.11-9042.

Zagol-Ikapite, I. Modification of platelet proteins by malondialdehyde: prevention by dicarbonyl scavengers / I. Zagol-Ikapite, I.R. Sosa, D. Oram [et al.] // J. Lipid Res. – 2015. – Vol. 56. – P. 2196–2205. DOI: 10.1194/jlr.P063271.

Vierkotter, A. Airborne particle exposure and extrinsic skin aging / A. Vierkotter, T. Schikowski, U. Ranft [et al.] // J. Invest. Dermatol. – 2010. – Vol. 130. – P. 2719e26. DOI:10.1038/jid.2010.204.

Hüls, A. Traffic-related air pollution contributes to development of facial lentigines: further epidemiological evidence from Caucasians and Asians / A. Hüls, A. Vierkötter, W. Gao [et al.] // J. Invest. Dermatol. – 2016. – Vol. 136, N 5. – P. 1053–1056. DOI: 10.1016/j.jid.2015.12.045.

Rajagopalan, P. Proteome-wide changes in primary skin keratinocytes exposed to diesel particulate extract-A role for antioxidants in skin health / P. Rajagopalan, A.P. Jain, V. Nanjappa [et al.] // J. Dermatol. Sci. – 2018. – Vol. 91, N 3. – P. 239–249. DOI: 10.1016/j.jdermsci.2018.05.003.

Tamai, Y. Association of cigarette smoking with skin colour in Japanese women / Y. Tamai, M. Tsuji, K. Wada [et al.] // Tob. Control. – 2014. – Vol. 23, N 3. – P. 253–256. DOI: 10.1136/tobaccocontrol-2012-050524.

Leonardi-Bee, J. Smoking and the risk nonmelanoma skin cancer: systematic review and meta-analysis / J. Leonardi-Bee, T. Ellison, F. Bath-Hextall // Arch. Dematol. – 2012. – Vol. 148, N 8. – P. 939–946. DOI: 10.1001/archdermatol.2012.1374.

Dusingize, J.C. Cigarette smoking and the risks of basal cell carcinoma and squamous cell carcinoma / J.C. Dusingize, C.M. Olsen, N.P. Pandeya [et al.] // J. Invest. Dermatol. – 2017. – Vol. 137, N 8. – P. 1700–1708. DOI: 10.1016/j.jid.2017.03.027.

Molesworth, E.H. Rodent Ulcer / E.H. Molesworth // Med. J. Aust. – 1927. – Vol. 1. – P. 878–895.

Kligman, A.M. Early destructive effect of sunlight on human skin / A.M. Kligman // JAMA. – 1969. – Vol. 210, N 13. – P. – 2377–2380.

Cleaver, J.E. UV damage, DNA repair and skin carcinogenesis / J.E. Cleaver, E. Crowley // Front. Biosci. – 2002. – Vol. 7. – P. d1024–1043. DOI: 10.2741/A829.

Ramasamy, K. Ultraviolet radiation-induced carcinogenesis: Mechanisms and experimental models / K. Ramasamy, M. Shanmugam, A. Balupillai [et al.] // J. Radiat. Cancer Res. – 2017. – Vol. 8. – P. 4–19. DOI: 10.4103/0973-0168.199301.

Cleaver, J.E. Ultraviolet radiation carcinogenesis. Part 4: Carcinogenesis / J.E. Cleaver, S. Ortiz‐Urda, R. Gulhar [et al.] // Holland-Frei Cancer Medicine /eds. R.C. Bast Jr., C.M. Croce, W.N. Hait [et al.]. – 2017. – P. 322–327. DOI:10.1002/9781119000822.hfcm026.

Brigelius-Flohe, R. Redox events in interleukin-1 signaling / R. Brigelius-Flohe, A. Banning, M. Kny [et al.] // Arch. Biochem. Biophys. – 2004. – Vol. 423. – P. 66–73. DOI: 10.1016/j.abb.2003.12.008.

Afanas’ev, I.B. On mechanism of superoxide signaling under physiological and pathophysiological conditions / I.B. Afanas’ev // Med. Hypothesis. – 2005. – Vol. 64. – P. 127–129. DOI: 10.1016/j.mehy.2004.05.009.

Valencia, A. Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes / A. Valencia, I.E. Kochevar // J. Invest. Dermatol. – Vol. 2008. – Vol. 128, N 1. – P. 214–222. DOI: 10.1038/sj.jid.5700960.

Korkina, L. The role of redox regulation in the normal physiology and inflammatory diseases of skin / L. Korkina, S. Pastore // Front. Biosci. – 2009. – Vol. 1. – P. 123–141. DOI: 10.2741/E13.

Sahoo, S. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases? / S. Sahoo, D.N. Meijles, P.J. Pagano // Clinю Sci. – 2016. – Vol. 130, N 5. – P. 317–335. DOI:10.1042/CS20150087. ISSN 0143-5221.

Zhang, G.Y. NADPH oxidase-2 is a key regulator of human dermal fibroblasts: a potential therapeutic strategy for the treatment of skin fibrosis / G.Y. Zhang, L.C. Wu, T. Dai [et al.] // Exp. Dermatol. – 2014. – Vol. 23, N 9. – P. 639–644. DOI: 10.1111/exd.12479.

André-Lévigne, D. Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair / D. André-Lévigne, A. Modarressi, M.S. Pepper [et al.] // Int. J. Mol. Sci. – 2017. – Vol. 18, N 10. – P. E2149. DOI: 10.3390/ijms18102149.

Dosoki, H. Targeting of NADPH oxidase in vitro and in vivo suppresses fibroblast activation and experimental skin fibrosis / H. Dosoki, A. Stegemann, M. Taha [et al.] // Exp. Dermatol. – 2017. – Vol. 26, N 1. – P. 73–81. DOI: 10.1111/exd.13180.

Mattson, D. Heat shock and the activation of AP-1 and inhibition of NF-kappa B DNA-binding activity: possible role of intracellular redox status / D. Mattson, C.M. Bradbury, K.S. Bisht [et al.] // Int. J. Hyperthermia. – 2004. – Vol. 20, N 2. – P. 224–233. DOI: 10.1080/02656730310001619956. PMID: 15195516.

Roebuck, K.A. Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (Review) / K.A. Roebuck // Int. J. Mol. Med. – 1999. – Vol. 4, N 3. – P. 223–230. DOI: 10.3892/ijmm.4.3.223.

Mahns, A. Contribution of UVB and UVA to UV-dependent stimulation of cyclooxygenase-2 expression in artificial epidermis / A. Mahns, R. Wolber, F. Stab [et al.] // Photochem. Photobiol.Sci. – 2004. – Vol. 3, N 3. – P. 257–262. DOI: 10.1039/b309067a.

Belli, R. Elevated 8-isoprostane levels in basal cell carcinoma and in UVA irradiated skin / R. Belli, P. Amerio, L. Brunetti [et al.] // Int. J. Immunopathol. Pharmacol. – 2005. – Vol. 18, N 3. – P. 497–502. DOI: 10.1177/039463200501800309.

Ley, K. Getting to the site of inflammation: the leukocyte adhesion cascade updated / K. Ley, C. Laudanna, M.I. Cybulsky // Nat. Rev. Immunol. – 2007. – Vol. 7, N 9. – P. 678–689. DOI: 10.1038/nri2156.

Meyskens, F.L.Jr. Redox-redux and NADPH oxidase (NOX): even more complicated than we thought it might be / F.L.Jr. Meyskens, F. Liu-Smith // J. Invest. Dermatol. – 2017. – Vol. 137, N 6. – P. 1208 –1210. DOI: 10.1016/j.jid.2017.01.019.

Saric, S. Polyphenols and Sunburn / S. Saric, R.K. Sivamani // Int. J. Mo.l Sci. – 2016. – Vol. 17, N 9. – P. 1–22. DOI: 10.3390/ijms17091521.

Abla, M.J. Quantification of skin penetration of antioxidants of varying lipophilicity / M.J. Abla, A.K. Banga // Int. J. Cosmet. Sci. – 2013. – Vol. 35, N 1. – P. 19–26. DOI: 10.1111/j.1468-2494.2012.00728.x.

Thoday, J.M. Effect of oxygen on the frequency of chromosome aberrations produced by X-rays / J.M. Thoday, J. Read // Nature. – 1947. – Vol. 160. – P. 680–609. DOI: 10.1038/160608a0.

Foster, T.H. Dosimetry in photodynamic therapy: oxygen and the critical importance of capillary density / T.H. Foster, L. Gao // Radiat. Res. – 1992. – Vol. 130. – P. 379–383. DOI: 10.2307/3578385.

Henderson, B.W. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors / B.W. Henderson, S.O. Gollnick, J.W. Snyder [et al.] // Cancer Res. – 2004. – Vol. 64, N 6. – P. 2120–2126. DOI: 10.1158/0008-5472.can-03-3513.

Carreau, A. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia / A. Carreau, B. El Hafny-Rahbi, A. Matejuk [et al.] // J. Cell. Mol. Med. – 2011. – Vol. 15, N 6. – P. 1239–1253. DOI: 10.1111/j.1582-4934.2011.01258.x.

Wang, W. Oxygen partial pressure in outer layers of skin of human finger nail folds / W. Wang, C.P. Winlove, C.C. Michel // J. Physiol. – 2003. – Vol. 549. – P. 855–863. DOI: 10.1113/jphysiol.2002.037994.

Evans, S.M. Oxygen levels in normal and previously irradiated human skin as assessed by EF5 binding / S.M. Evans, A.E. Schrlau, A.A. Chalian [et al.] // J. Invest. Dermatol. – 2006. – Vol. 126, N 12. – P. 2596–2606. DOI: 10.1038/sj.jid.5700451.

Keeley, T.P. Defining physiological normoxia for improved translation of cell physiology to animal models and humans / T.P. Keeley, G.E. Mann // Physiol. Rev. – 2019. – Vol. 99, N 1. – P. 161 –234. DOI: 10.1152/physrev.00041.2017.

Shindo, Y. Antioxidant defense mechanisms in murine epidermis and dermis and their responses to ultraviolet light / Y. Shindo, E. Witt, L. Packer // J. Invest. Dermatol. – 1993. – Vol. 100, N 3. – P. 260–265. DOI: 10.1111/1523-1747.ep12469048.

Shindo, Y. Recovery of antioxidants and reduction in lipid hydroperoxides in murine epidermis and dermis after acute ultraviolet radiation exposure / Y. Shindo, E. Witt, D. Han [et al.] // Photodermatol. Photoimmunol. Photomed. – 1994. – Vol. 10, N 5. – P. 183–191.

Shindo, Y. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin / Y. Shindo, E. Witt, D. Han [et al.] // J. Invest. Dermatol. – 1994. – Vol. 102, N 1. – P. 122–124. DOI: 10.1111/1523-1747.ep12371744.

Thiele, J. Permeability and antioxidant barriers in aged epidermis / J. Thiele, C.O. Barland, R. Ghadially [et al.] // Skin Aging / eds. B. Gilchrest, J. Krutmann. – Springer, Berlin, Germany, 2006. P. 65–79.

Parrado C. Oral photoprotection: effective agents and potential candidates / C. Parrado, N. Philips, Y. Gilaberte [et al.] // Front. Med. – 2018. – Vol. 5 – P. 1 –19. DOI: 10.3389/fmed.2018.00188.

Fernández-García, E. Skin protection against UV light by dietary antioxidants / E. Fernández-García // Food Funct. – 2014. – Vol. 5, N 9. – P. 1994 – 2003. DOI: 10.1039/c4fo00280f.

Alvim Sant’Anna Addor, F. Oral Photoprotection / F. Alvim Sant’Anna Addor, H. Ponzio, F. Naranjo Ravelli // Daily routine in cosmetic dermatology: Clinical approaches and procedures in cosmetic dermatology / eds. M.C.A. Issa, B. Tamura. – Cham: Springer, 2016. – P. 1–8.

Antioxidants and its functions in human body – A Review / A. Yadav, R. Kumari, A. Yadav [et al.] // Res. Environ. Life Sci. – 2016. – Vol. 9, N 11. – P. 1328–1331.

Published

2022-01-27

Issue

Section

Biological sciences