Effect of triterpenoid betulin on expression of carnitine-palmitoyltransferase-i in liver of rats with non-alcoholic fatty liver disease with signs of steatohepatitis
Keywords:
betulin, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, carnitine palmitoyltransferase 1, lipid metabolismAbstract
The present study was the first to demonstrate that betulin increases both the expression and enzymatic function of carnitine palmitoyltransferase type 1 (CPT-1) in liver tissue during experimental non-alcoholic fatty liver disease, as determined by the use of certain steatohepatitis markers in rat models. This increase in CPT-1 correlated with an increase in mitochondrial β-oxidation of fatty acids, culminating in a reduction in the severity of steatohepatosis and dyslipidemia symptoms. This finding significantly expands the understanding of the molecular mechanisms underlying the lipid-lowering properties of betulin and its potential application as a therapeutic agent for non-alcoholic fatty liver disease.
References
Global incidence and prevalence of nonalcoholic fatty liver disease / M. L. Teng [et al.] // Clin. Mol. Hepatol. – 2023. – Vol. 29 (Suppl). – P. 32–42. DOI: 10.3350/cmh.2022.0365
The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review / Z. M. Younossi [et al.] // Hepatology. – 2023. – Vol. 77, Iss. 4. – P. 1335–1347. DOI: 10.1097/HEP.0000000000000004
Lim, S. Crosstalk between nonalcoholic fatty liver disease and cardiometabolic syndrome / S. Lim, M. R. Taskinen, J. Borén // Obes. Rev. – 2019. – Vol. 20, Iss. 4. – P. 599–611. DOI: 10.1111/obr.12820
Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult (2021) / G. J. Pearson [et al.] // Can. J. Cardiol. – 2021. – Vol. 37, Iss. 8. – P. 1129–1150. DOI: 10.1016/j.cjca.2021.03.016
Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques / J. J. Tang [et al.] // Cell Metab. – 2011. – Vol. 13, Iss. 1. – P. 44–56. DOI: 10.1016/j.cmet.2010.12.004
Betulin attenuated liver damage by prevention of hepatic mitochondrial dysfunction in rats with alcoholic steatohepatitis / V. Buko [et al.] // Physiology International. – 2019. – Vol. 106, Iss. 4. – P. 323–334. DOI: 10.1556/2060.106.2019.26
Betulin/2-hydroxypropyl-β-cyclodextrin inclusion complex: physicochemical characterization and hepatoprotective activity / V. Buko [et al.] // J. Mol. Liq. – 2020. – Vol. 309. – Article 113118. DOI: 10.1016/j.molliq.2020.113118.
Protective effects of triterpenoid betulin on type 2 diabetes mellitus in rats / A. H. Shlyahtun [et al.] // Biochemistry and Molecular Biology. – 2024. – Vol. 3(1). – P. 220–229.
Shlyahtun, A. H. Effect of betulin on levels of main circulating adipocytokines in the blood of rats with type 2 diabetes mellitus / A. H. Shlyahtun // Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine. – 2023. – Vol. 59, Iss. 4. – P. 110–114. DOI: 10.52368/2078-0109-2023-59-4-110-114
Влияние бетулина на активность карнитин-пальмитоилтрансферазы 1 типа в митохондриях печени крыс / А. Г. Шляхтун [и др.] // Вестник Полесского государственного университета. Серия природоведческих наук. – 2022. – № 2. – С. 57–63.
Schlaepfer, I. R. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential / I. R. Schlaepfer, M. Joshi // Endocrinology. – 2020. – Vol. 161, Iss. 2. – Article bqz046. DOI: 10.1210/endocr/bqz046
Zhao, G. Simultaneous determination of betulin and betulinic acid in white birch bark using RP-HPLC / G. Zhao, W. Yan, D. Cao // J. Pharm. Biomed. Anal. – 2007. – Vol. 43, Iss. 3. – P. 959–962. DOI: 10.1016/j.jpba.2006.09.026
Diabetes is a progression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepatitis / L. Lo [et al.] // J. Hepatol. – 2011. – Vol. 55, Iss. 2. – P. 435–444. doi: 10.1016/j.jhep.2010.10.039
Duncombe, W. G. The colorimetric micro-determination of non-esterified fatty acids in plasma / W. G. Duncombe // Clinica Chim. Acta. – 1964. – Vol. 9. – P. 122–125. DOI: 10.1016/0009-8981(64)90004-x
Folch, J. A simple method for the isolation and purification of total lipides from animal tissues / J. Folch, M. Lees, G. H. S. Stanley // J. Biol. Chem. – 1957. – Vol. 226. – P. 497–509. doi: 10.1016/S0021-9258(18)64849-5
Bieber, L. L. A rapid spectrophotometric assay for carnitine palmitoyltransferase / L. L. Bieber, T. Abraham, T. Helmrath // Anal. Biochem. – 1972. – Vol. 50, Iss. 2. – P. 509–518. DOI: 10.1016/0003-2697(72)90061-9
Peterson, G. L. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall / G. L. Peterson // Anal. Biochem. – 1979. – Vol. 100, Iss. 2. – P. 201–220. DOI: 10.1016/0003-2697(79)90222-7
Livak, K. J. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method / K. J. Livak, T. D. Schmittgen // Methods (San Diego, Calif.). – 2001. – Vol. 25, Iss. 4. – P. 402–408. DOI: 10.1006/meth.2001.1262
European Treaty Series No.170. Protocol of amendment to the European convention for the protection of vertebrate animals used for experimental and other scientific purposes / Council of Europe. – Strasbourg, 1998. – 3 p.
Fatty acids induce L-CPT I gene expression through a PPARα-independent mechanism in rat hepatoma cells / C. Le May [et al.] // J. Nutr. – 2005. – Vol. 135, Iss. 10. – P. 2313–2319. DOI: 10.1093/jn/135.10.2313
Liang, K. Mitochondrial CPT1A: insights into structure, function, and basis for drug development / K. Liang // Front. Pharmacol. – 2023. – Vol. 14. – Article 1160440. DOI: 10.3389/fphar.2023.1160440
References
Teng M.L., Ng C.H., Huang D.Q., Chan K.E., Tan D.J., Lim W.H., Yang J.D., Tan E., Muthiah M.D. Global incidence and prevalence of nonalcoholic fatty liver disease. Clinical and Molecular Hepatology, 2023, vol. 29 (suppl), pp. 32–42. DOI: 10.3350/cmh.2022.0365
Younossi Z.M., Golabi P., Paik J.M., Henry A., Van Dongen C., Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology, 2023, vol. 77, no. 4, pp. 1335-1347. DOI: 10.1097/HEP.0000000000000004
Lim S., Taskinen M.R., Borén J. Crosstalk between nonalcoholic fatty liver disease and cardiometabolic syndrome. Obesity Reviews, 2019, vol. 20, no. 4, pp. 599–611. DOI: 10.1111/obr.12820
Pearson G.J., Thanassoulis G., Anderson T.J., Barry A.R. et al. Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult (2021). Canadian Journal of Cardiology, 2021, vol. 37, no. 8, pp. 1129–1150. DOI: 10.1016/j.cjca.2021.03.016
Tang J.J., Li J.G., Qi W., Qiu W.W., Li P.S., Li B.L., Song B.L. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metabolism, 2011, vol. 13, no. 1, pp. 44–56. DOI: 10.1016/j.cmet.2010.12.004
Buko V., Kuzmitskaya I., Kirko S., Belonovskaya E., Naruta E., Lukivskaya O., Shlyahtun A., Ilyich T., Zakreska A., Zavodnik I. Betulin attenuated liver damage by prevention of hepatic mitochondrial dysfunction in rats with alcoholic steatohepatitis. Physiology International, 2019, vol. 106, no. 4, pp. 323–334. DOI: 10.1556/2060.106.2019.26
Buko V., Zavodnik I., Palecz B., Stepniak A., Kirko S., Shlyahtun A., Misiuk W., Belonovskaya E., Lukivskaya O., Naruta E., Kuzmitskaya I., Ilyich T., Erdenebayar B., Rakhmadiyeva S. Betulin/2-hydroxypropyl-β-cyclodextrin inclusion complex: physicochemical characterization and hepatoprotective activity. Journal of Molecular Liquids, 2020, vol. 309, article 113118. DOI: 10.1016/j.molliq.2020.113118
Shlyahtun A.H., Maksimchik Yu.Z., Zakrzeska A., Sutsko I.P., Raduta A.F., Polubok V.Ch., Buksha E.V., Bogdevich E.V., Kitlas P., Tomulewicz M. Protective effects of triterpenoid betulin on type 2 diabetes mellitus in rats. Biochemistry and Molecular Biology, 2024, vol. 3(1), pp. 220–229.
Shlyahtun A.H. Effect of betulin on levels of main circulating adipocytokines in the blood of rats with type 2 diabetes mellitus. Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine, 2023, vol. 59, no. 4, pp. 110–114. DOI: 10.52368/2078-0109-2023-59-4-110-114
Shlyahtun A.H., Maksimchik Yu.Z., Raduta E.F., Sutsko I.P. Vlijanie betulina na aktivnost' karnitin-pal'mitoiltransferazy 1 tipa v mitohondrijah pecheni krys [Effect of betulin on carnitine-palmitoyltransferase-1 activity in rats liver]. Vestnik Polesskogo gosudarstvennogo universiteta. Serija prirodovedcheskih nauk. [Bulletin of Palesky state university. Series in Natural Sciences], 2022, no. 2, pp. 57–63. (In Russian)
Schlaepfer I.R., Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology, 2020, vol. 161, no. 2, article bqz046. DOI: 10.1210/endocr/bqz046
Zhao G., Yan W., Cao D. Simultaneous determination of betulin and betulinic acid in white birch bark using RP-HPLC. Journal of Pharmaceutical and Biomedical Analysis, 2007, vol. 43, no. 3, pp. 959–962. DOI: 10.1016/j.jpba.2006.09.026
Lo L., McLennan S.V., Williams P.F., Bonner J., Chowdhury S., McCaughan G.W., Gorrell M.D., Yue D.K., Twigg S.M. Diabetes is a progression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepatitis. Journal of Hepatology, 2011, vol. 55, no. 2, pp. 435–444. DOI: 10.1016/j.jhep.2010.10.039
Duncombe W.G. The colorimetric micro-determination of non-esterified fatty acids in plasma. Clinica Chimica Acta, 1964, vol. 9, pp. 122–125. DOI: 10.1016/0009-8981(64)90004-x
Folch J., Lees M., Stanley G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 1957, vol. 226, pp. 497–509. DOI: 10.1016/S0021-9258(18)64849-5
Bieber L.L., Abraham T., Helmrath T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Analytical Biochemistry, 1972, vol. 50, no. 2, pp. 509–518. DOI: 10.1016/0003-2697(72)90061-9
Peterson G.L. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Analytical Biochemistry, 1979, vol. 100, no. 2, pp. 201–220. doi: 10.1016/0003-2697(79)90222-7
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods (San Diego, Californuia), 2001, vol. 25, no. 4, pp. 402–408. DOI: 10.1006/meth.2001.1262
European Treaty Series No.170. Protocol of amendment to the European convention for the protection of vertebrate animals used for experimental and other scientific purposes / Council of Europe, Strasbourg, 1998, 3 p.
Le May C., Caüzac M., Diradourian C., Perdereau D., Girard J., Burnol A.F., Pégorier J.P. Fatty acids induce L-CPT I gene expression through a PPARα-independent mechanism in rat hepatoma cells. Journal of Nutrition, 2005, vol. 135, no. 10, pp.2313–2319. DOI: 10.1093/jn/135.10.2313
Liang K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Frontiers in Pharmacology, 2023, vol. 14, article 1160440. DOI: 10.3389/fphar.2023.1160440.