Биосинтез тиамина

Авторы

  • А.Ф. Макарчиков

Ключевые слова:

тиамин, биосинтез, регуляция, бактерии, археи, дрожжи, растения

Аннотация

Тиамин (витамин В1) необходим для жизнедеятельности всех известных организмов, выполняя в форме тиаминдифосфата (ТДФ) каталитические функции в реакциях центрального и вторичного метаболизма. В клетках животных тиамин не образуется и поэтому должен прстоянно поступать с пищей. Большинство эубактерий, архей, грибов и растений способны осуществлять биосинтез тиамина de novo либо использовать продукты его деградации. Биосинтез пиримидинового (в виде 4-амино-5-гидроксиметил-2-метилпиримидин дифосфата, HMP-PP) и тиазолового (в виде 2-карбокси-4-метил-5-β-гидроксиэтилтиазол фосфата, HET-P) колец молекулы витамина В1 протекает раздельно с их последующей конденсацией в тиаминмонофосфат (ТМФ). У бактерий и архей ТМФ превращается в ТДФ под действием тиаминфосфат-киназы (ThiL), а в клетках эукариот подвергается гидролизу до тиамина, который фосфорилируется до ТДФ тиаминпирофосфокиназой. Бактерии синтезируют HET-P из 2-иминоацетата, 1-дезокси-D-ксилулозо-5-фосфата и ThiS-тиокарбоксилата при помощи по крайней мере 7 белков (Dxs, ThiS, ThiF, ThiO, NifS, ThiG и TenI – у B. subtilis), тогда как в образование HMP-PP (из 5-аминоимидазолриботида (AIR)) вовлечены только два белка – ThiC и ThiD. У грибов HET-P образуется из NAD и глицина, при этом источником серы служит остаток Cys активного центра белка THI4 – суицидного фермента, осуществляющего лишь один каталитический цикл. В синтезе HMP-PP в клетках грибов задействован еще один суицидный фермент – THI5, включающий атом азота остатка Hys своего активного центра в пиридиновое кольцо пиридлксаль-5-фосфата в реакции образования HMP-P, который затем фосфорилируется белком THI20 до HMP-PP. В растениях образование HET-P протекает, как и у грибов, под действием белка THI1(THI4), тогда как HMP-PP синтезируется по бактериальному пути из AIR с участием белков THIС и TH1. Археи синтезируют тиазоловый гетероцикл молекулы тиамина по эукариотному THI4-механизму, а пиримидиновый – по бактериальному/растительному пути. Регуляция биосинтеза тиамина у разных видов организмов осуществляется благодаря наличию ТДФ-рибосвитчей и под контролем транскрипционных факторов.

Биография автора

А.Ф. Макарчиков

докт. биол. наук, доцент, заведующий кафедрой химии Гродненский государственный аграрный университет, ведущий научный сотрудник РНИУП «Институт биохимии биологически активных соединений» НАН Беларуси, научный консультант ЧНИУП «Алникор», г. Гродно, Республика Беларусь

Библиографические ссылки

Makarchikov, A. F. Vitamin B1: metabolism and functions / A. F. Makarchikov // Biochemistry (Moscow). Suppl. Ser. B: Biomed. Chem. – 2009. – Vol. 3. – P. 116–128.

ExplorEnz – The Enzyme Database [Электронный ресурс]. – Режим доступа: https://www.enzyme-database.org. – Дата доступа: 22.11.2021.

Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals / A.F. Makarchikov [et al.] // Cell. Mol. Life Sci. – 2003. – Vol. 60. – P. 1477–1488.

Discovery of a natural thiamine adenine nucleotide / L. Bettendorff [et al.] // Nat. Chem. Biol. – 2007. – Vol. 3. – P. 211–212.

Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation / B. Lakaye [et al.] // J. Biol. Chem. - 2004. - Vol. 279. - P. 17142-17147.

Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress / T. Gigliobianco [et al.] // BMC Microbiol. – 2010. – Vol. 10: 148.

An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate / T. Gigliobianco [et al.] // Sci. Rep. – 2013. – Vol.3: 1071.

Makarchikov, A. F. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate / A. F. Makarchikov, A. Brans, L. Bettendorff // BMC Biochem. – 2007. – Vol. 8:17.

Thiamine triphosphate: a ubiquitous molecule in search of a physiological role // L. Bettendorff [et al.] // Metab. Brain Dis. – 2014. – Vol. 29. – P. 1069–1082.

Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain / M. Gangolf [et al.] // J. Biol. Chem. – 2010. – Vol. 285. – P. 583–594.

Evidence for in vivo synthesis of thiamin triphosphate by cytosolic adenylate kinase in chicken skeletal muscle / K. Miyoshi [et al.] // J. Biochem. - 1990. - Vol. 108. - P. 267270.

Zhao R. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors / R. Zhao, D.I. Goldman // Mol. Aspects Med. – 2013. – Vol. 34 – P. 373–385.

Maupin-Furlow, J.A. Vitamin B1 (thiamine) metabolism and regulation in Archaea / J.A. Maupin-Furlow // B Group Vitamins-Current Uses and Perspectives / J.G. LeBlanc, G.S. De Giori, eds. – InTech, 2018. – P. 9–31.

Nosaka, K. Recent progress in understanding thiamine biosynthesis and its genetic regulation in Saccharomyces cerevisiae / K. Nosaka // Appl. Microbiol. Biotechnol. – 2006. – Vol. 72. – P. 30–40.

Settembre, E. Structural biology of enzymes of the thiamin biosynthesis pathway / E. Settembre, T.P. Begley, S.E. Ealick // Curr. Opin. Struct. Biol. – 2003. – Vol. 13. – P. 739–747.

Fitzpatrick, T.B. Complex behavior: from cannibalism to suicide in the vitamin B1 biosynthesis world / T.B. Fitzpatrick, S. Thore // Curr. Opin. Struct. Biol. – 2014. – Vol. 29. –P. 34–43.

Begley T. P. Thiamin biosynthesis – still yielding fascinating biological chemistry / T. P. Begley, S. E. Ealick, F. W. McLafferty // Biochem. Soc. Trans. – 2012. – Vol. 40. – P. 555–560.

Du, Q. Thiamin (vitamin B1) biosynthesis and regulation: a rich source of anti-microbial drug targets? / Q. Du, H. Wang, J. Xie // Int. J. Biol. Sci. – 2011. – Vol. 7. – P. 41–52.

Goyer, A. Thiamine in plants: aspects of its metabolism and functions / A. Goyer // Phytochemistry. – 2010. – Vol. 71. – P. 1615–1624.

Kowalska, E. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts / E. Kowalska, A. Kozik // Cell. Mol. Biol. Lett. – 2008. – Vol. 13. – P. 271–282.

Jurgenson, C. T. The structural and biochemical foundations of thiamin biosynthesis / C. T. Jurgenson, T. P. Begley, S.E. Ealick // Annu. Rev. Biochem. – 2009. – Vol. 78. – P. 569–603.

A missing enzyme in thiamin thiazole biosynthesis: identification of TenI as a thiazole tautomerase // A.B. Hazra [et al] // J. Am. Chem. Soc. – 2011. – Vol. 133. – P. 9311–9319.

Challand, M. R. Catalytic activity of the anaerobic tyrosine lyase required for thiamine biosynthesis in Escherichia coli / M.R. Challand, F.T. Martins, P.L. Roach // J. Biol. Chem. – 2010. – Vol. 285. – P. 5240–5248.

Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex / R. Leonardi [et al.] // FEBS Lett. – 2003. – Vol. 539. – P. 95–99.

Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate / Palenchar P.M. [et al.] // J. Biol. Chem. – 2000. – Vol. 275. – P. 8283–8286.

Palmer L.D. The cysteine desulfhydrase CdsH is conditionally required for sulfur mobilization to the thiamine thiazole in Salmonella enterica / L.D. Palmer, M.H. Leung, D.M. Downs // J. Bacteriol. – 2014. – Vol. 196. – P. 3964–3970.

Cloning and characterization of the thiD/J gene of Escherichia coli encoding a thiamin-synthesizing bifunctional enzyme, hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase / T. Mizote [et al.] // Microbiology. – 1999. – Vol. 145. – P. 495–501.

The mechanism of action of bacimethrin, a naturally occurring thiamin antimetabolite / J.J. Reddick [et al.] // Bioorg. Med. Chem. Lett. – 2001. – Vol. 11. – P. 2245–2248.

A strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes damaging errors in thiamin biosynthesis / A.M. Thamm [et al.] // Biochem J. – 2017. – Vol. 474. – P. 2887–2895.

Sensitive genome-wide screen for low secondary enzymatic activities: the YjbQ family shows thiamin phosphate synthase activity / E. Morett [et al.] // J. Mol. Biol. – 2008. – Vol. 376. – P. 839–853.

Nakayama H. Biosynthesis of thiamine pyrophosphate in Escherichia coli / H. Nakayama, R. Hayashi // J. Bacteriol. - 1972. - Vol. 109. - P. 936-938.

Webb, E. Characterization of thiL, encoding thiamin-monophosphate kinase, in Salmonella typhimurium / E. Webb, D. Downs // J. Biol. Chem. - 1997. - Vol. 272. - P. 15702-15707.

Sanemori, H. Pathway of thiamine pyrophosphate synthesis in Micrococcus denitrificans / H. Sanemori, Y. Egi, T. Kawasaki // J. Bacteriol. – 1976. – Vol. 126. – P. 1030–1036.

Sanemori, H. Purification and properties of thiamine pyrophosphokinase in Paracoccus denitrificans / H. Sanemori, T. Kawasaki // J. Biochem. - 1980. - Vol. 88. - P. 223-230.

The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels / I.B. Müller [et al.] // PLoS ONE. – 2009. – Vol. 4(11): e7656.

Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis / G. Hasnain [et al.] // Biochem. J. – 2016. – Vol. 473. – P. 157–166.

Essential metabolic routes as a way to ESKAPE from antibiotic resistance / Barra A.L.C. [et al.] // Front. Public Health. – 2020. – Vol. 8: 26.

The ThiL enzyme is a valid antibacterial target essential for both thiamine biosynthesis and salvage pathways in Pseudomonas aeruginosa / H.J. Kim [et al.] // J. Biol. Chem. – 2020. – Vol. 295. – P. 10081–10091.

Saccharomyces cerevisiae THI4p is a suicidal thiamin thiazole synthase / A. Chatterjee [et al.] // Nature. – 2011. – Vol. 478. – P. 542–546.

Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance / C.R. Machado [et al.] // J. Mol. Biol. – 1997. – Vol. 273. – P. 114–121.

Expression, purification, and activity of ActhiS, a thiazole biosynthesis enzyme from Acremonium chrysogenum / Z. Song [et al.] // Biochemistry (Mosc). – 2017. – Vol. 82. – P. 852–860.

Faou, P. Neurospora crassa CyPBP37: a cytosolic stress protein that is able to replace yeast Thi4p function in the synthesis of vitamin B1 / P. Faou, M. Tropschug // J. Mol. Biol. – 2004. – Vol. 344. – P. 1147–1157.

Wightman R. The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine / R. Wightman, P.A. Meacock // Microbiology. – 2003. – Vol. 149. – P. 1447–1460.

Llorente, B. Genetic redundancy and gene fusion in the genome of the Baker's yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway / B. Llorente, C. Fairhead, B. Dujon // Mol. Microbiol. – 1999. – Vol. 32. – P. 1140–1152.

Thiamin pyrimidine biosynthesis in Candida albicans: a remarkable reaction between histidine and pyridoxal phosphate / R.-Y. Lai [et al.] // J. Am. Chem. Soc. – 2012. – Vol. 134. – P. 9157–9159.

Kawasaki, Y. Copurification of hydroxyethylthiazole kinase and thiamine-phosphate pyrophosphorylase of Saccharomyces cerevisiae: characterization of hydroxyethylthiazole kinase as a bifunctional enzyme in the thiamine biosynthetic pathway / Y. Kawasaki // J. Bacteriol. - 1993. - Vol. 175. - P. 5153-5158.

Paxhia, M.D. Functional characterization of the HMP-P synthase of Legionella pneumophila (Lpg1565) / M.D. Paxhia, M.S. Swanson, D.M. Downs // Mol. Microbiol. – 2021. – Vol. 115. – P. 539–553.

Isolation and characterization of a thiamine pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae / K. Nosaka [et al.] // J. Biol. Chem. – 1993. – Vol. 268. – P. 17440–17447.

Schizosaccharomyces pombe thiamine pyrophosphokinase is encoded by gene tnr3 and is a regulator of thiamine metabolism, phosphate metabolism, mating, and growth / H. Fankhauser [et al.] // J. Biol. Chem. – 1995. – Vol. 270. – P. 28457–28462.

High-resolution crystal structure of the eukaryotic HMP-P synthase (THIC) from Arabidopsis thaliana / S. Coquille [et al.] // J. Struct. Biol. – 2013. – Vol. 184. – P. 438–444.

Ajjawi, I. Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1 / I. Ajjawi, Y. Tsegaye, D. Shintani // Arch. Biochem. Biophys. – 2007. – Vol. 459. – P. 107–114.

Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities / M. Rapala-Kozik [et al.] // Biochem. J. – 2007. – Vol. 408. – P.149–159.

Vitamin B1 diversity and characterization of biosynthesis genes in cassava / N. Mangel [et al.] //J. Exp. Bot. – 2017. – Vol. 68. – P. 3351–3363.

Plant vitamin B pathways and their compartmentations: a guide for the perplexed / S. Gerdes [et al.] // J. Exp. Bot. – 2012. – Vol. 63. – P. 5379–5395.

Arabidopsis TH2 encodes the orphan enzyme thiamin monophosphate phosphatase / M. Mimura [et al.] // Plant Cell. – 2016. – Vol. 28. – P. 2683–2696.

The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B(1) biosynthesis pathway / W.Y. Hsieh [et al.] // Plant J. – 2017. – Vol. 91. – P. 145–157.

The rice PALE1 homolog is involved in the biosynthesis of vitamin B1 / P.H. Hsieh [et al.] // Plant Biotechnol. J. – 2021. – Vol. 19. – P. 218–220.

Divisions of labor in the thiamin biosynthetic pathway among organs of maize / J.-C. Guan [et al.] // Front. Plant Sci. – 2014. – Vol. 5: 370.

Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s / J. Joshi [et al.] // Biochem. J. – 2020. – Vol. 477. – P. 2055–2069.

Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling / C.J. Nelson [et al.] // Plant Physiol. – 2014. – Vol. 166. – P. 91–108.

Protein degradation rate in Arabidopsis thaliana leaf growth and development / L. Li [et al.] // Plant Cell. – 2017. – Vol. 29. – P. 207–228.

Palmer, L.D. The thiamine biosynthetic enzyme ThiC catalyzes multiple turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites / L.D. Palmer, D.M. Downs // J. Biol. Chem. – 2013. - Vol. 288. – P. 30693–30699.

Redesigning thiamin synthesis: Prospects and potential payoffs / A.D. Hanson [et al.] // Plant Sci. – 2018. – Vol. 273. – P. 92–99.

Fitzpatrick, T.B. The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification / T.B. Fitzpatrick, L.M. Chapman // J. Biol. Chem. - 2020. - Vol. 295. - P. 12002-112013.

Goyer, A. Thiamin biofortification of crops / A. Goyer // Curr. Opin. Biotechnol. – 2017. – Vol. 44. – P. 1–7.

Minhas A.P. Pathway editing targets for thiamine biofortification in rice grains / A.P. Minhas, R. Tuli, S. Puri // Front. Plant Sci. – 2018. – Vol. 9: 975.

Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation / S. Strobbe [et al.] // Plant Biotechnol. J. – 2021. – Vol. 19. – P. 1253–1267.

Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms / D.A. Rodionov [et al.] // J. Biol. Chem. – 2002. – Vol. 277. – P. 48949–48959.

Systematic discovery of analogous enzymes in thiamin biosynthesis / E. Morett [et al.] // Nat. Biotechnol. – 2003. – Vol. 21. – P. 790–795.

ThiN as a versatile domain of transcriptional repressors and catalytic enzymes of thiamine biosynthesis / S. Hwang [et al.] // J. Bacteriol. – 2017. – Vol. 199(4): e00743-16.

Enzymatic and structural characterization of an archaeal thiamin phosphate synthase / M. Hayashi [et al.] // Biochim. Biophys. Acta. – 2014. – Vol. 1844. – P. 803–809.

The biosynthesis of the pyrimidine moiety of thiamin in Halobacterium salinarum / Y. Kijima [et al.] // J. Nutr. Sci. Vitaminol. (Tokyo). – 2016. – Vol. 62. – P. 130–133.

From suicide enzyme to catalyst: the iron-dependent sulfide transfer in Methanococcus jannaschii thiamin thiazole biosynthesis / B.E. Eser [et al.] // J. Am. Chem. Soc. – 2016. – Vol. 138. - P. 3639–3642.

The biosynthesis of the thiazole moiety of thiamin in the archaeon Halobacterium salinarum / M. Hayashi [et al.] // J. Nutr. Sci. Vitaminol. (Tokyo). – 2015. – Vol. 61. – P. 270–274.

Conserved active site cysteine residue of archaeal THI4 homolog is essential for thiamine biosynthesis in Haloferax volcanii / S. Hwang [et al.] // BMC Microbiol. – 2014. – Vol. 14(1): 260.

Structural basis for iron-mediated sulfur transfer in archael and yeast thiazole synthases / X. Zhang [et al.] // Biochemistry. – 2016. – Vol. 55. – P. 1826–1838.

Parts-prospecting for a high-efficiency thiamin thiazole biosynthesis pathway / J. Sun [et al.] // Plant Physiology. – 2019. – Vol. 179. – P. 958–968.

Structure and function of aerotolerant, multiple-turnover THI4 thiazole synthases / J. Joshi [et al.] // Biochem J. – 2021. – Vol. 478. – P. 3265–3279.

Hayashi, M. Characterization of thiamin phosphate kinase in the hyperthermophilic archaeon Pyrobaculum calidifontis / M. Hayashi, K. Nosaka // J. Nutr. Sci. Vitaminol. (Tokyo). – 2015. – Vol. 61. – P. 369–374.

A new thiamin salvage pathway / A.H. Jenkins [et al.] // Nat. Chem. Biol. – 2007. – Vol. 3. – P. 492–497.

Mizote, T. The thiM locus and its relation to phosphorylation of hydroxyethylthiazole in Escherichia coli / T. Mizote, H. Nakayama // J. Bacteriol. – 1989. – Vol. 171. – P. 3228–3232.

Tani, Y. Purification and properties of 4-methyl-5-hydroxyethylthiazole kinase from Escherichia coli / Y. Tani, K. Kimura, H. Mihara // Bioscience, Biotechnology, and Biochemistry, 2016, vol. 80, pp. 514–517.

French, J.B. Structure of trifunctional THI20 from yeast // J.B. French, T.P. Begley, S.E. Ealick // Acta Cryst. – 2011. – Vol. D67. – P. 784–791.

The 2.35 A structure of the TenA homolog from Pyrococcus furiosus supports an enzymatic function in thiamine metabolism / J. Benach [et al.] // Acta Crystallogr. D. Biol. Crystallogr. – 2005. – Vol. 61. – P. 589–598.

Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize / M. Yazdani [et al.] // Phytochemistry. – 2013. – Vol. 94. – P. 68–73.

Salvage of the thiamin pyrimidine moiety by plant TenA proteins lacking an active-site cysteine / R. Zallot [et al.] // Biochem. J. – 2014. – Vol. 463. – P. 145–155.

Identification of the two missing bacterial genes involved in thiamine salvage: thiamine pyrophosphokinase and thiamine kinase / J. Melnick [et al.] // J. Bacteriol. – 2004. – Vol. 186. – P. 3660–3662.

Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine / C. Wrenger [et al.] // Biol. Chem. – 2006. – Vol. 387. – P. 41–51.

Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea / P. Carini [et al.] // ISME J. – 2014. – P. 1–12.

Carboxythiazole is a key microbial nutrient currency and critical component of thiamin biosynthesis / R.W. Paerl [et al.] // Sci. Rep. – 2018. – Vol. 8: 5940.

Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages / D. McRose [et al.] // ISME J. – 2014. – Vol. 8. – P. 2517–2529.

Structural characterization of the regulatory proteins TenA and TenI from Bacillus subtilis and identification of TenA as a thiaminase II / A.V. Toms [et al.] // Biochemistry. –2005. – Vol. 44. – P. 2319–2329.

Involvement of thiaminase II encoded by theTHI20 gene in thiamin salvage of Saccharomyces cerevisiae / M. Onozuka [et al.] // FEMS Yeast Res. – 2008. – Vol. 8. – P. 266–275.

Structure of a eukaryotic thiaminase I / C.A. Kreinbring [et al.] // Proc. Natl. Acad. Sci. USA. – 2014. – Vol. 111. – P. 137–142.

Kraft, C.E. A rapid method for assaying thiaminase I activity in diverse biological samples / C.E. Kraft, E.R.L. Gordon, E.R. Angert // PLoS ONE – 2014. – Vol. 9(3): e92688.

The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels / I. B. Müller [et al.] // PLoS ONE. – 2009. – Vol. 4(11): e7656.

Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1 / M. Li [et al.] // Mol. Cell. Biol. – 2010. – Vol. 30. – P. 3329–3341.

Miranda-Rios, J. The THI-box riboswitch, or how RNA binds thiamin pyrophosphate / J. Miranda-Rios // Structure. – 2007. – Vol. 15. – P. 259–265.

Wachter, A. Riboswitch-mediated control of gene expression in eukaryotes / A. Wachter // RNA Biol. – 2010. – Vol. 7. – P. 67–76.

Bocobza, S.E. Small molecules that interact with RNA: riboswitch-based gene control and its involvement in metabolic regulation in plants and algae / S.E. Bocobza, A. Aharoni // Plant J. – 2014. – Vol. 79. – P. 693–703.

Riboswitch-dependent gene regulation and its evolution in the plant kingdom / S. Bocobza [et al.] // Genes Dev. – 2007. – Vol. 21. – P. 2874–2879.

Thiamine biosynthesis in algae is regulated by riboswitches / Croft M. T. [et al.] // Proc. Natl. Acad. Sci. USA. – 2007. – Vol. 104. – P. 20770–20775.

Moldovan, M. A. Comparative genomic analysis of fungal TPP-riboswitches / M. A. Moldovan, S. A. Petrova, M. S. Gelfand // Fungal Genet. Biol. – 2018. – Vol. 114. – P. 31–41.

Control of alternative RNA splicing and gene expression by eukaryotic riboswitches / M.T. Cheah [et al.] // Nature. – 2007. – Vol. 447. – P. 497–500.

Phylogenomic and comparative analysis of the distribution and regulatory patterns of TPP riboswitches in fungi / Mukherjee S. // Sci. Rep. – 2018. – Vol. 8: 5563.

Sudarsan, N. Metabolite-binding RNA domains are present in the genes of eukaryotes / N. Sudarsan, J.E. Barrick, R.R. Breaker // RNA. – 2003. – Vol. 9. – P. 644–647.

Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5'-UTR / T. Kubodera [et al.] // FEBS Lett. – 2003. – Vol. 555. – P. 516–520.

Panchal, V. Riboswitches as drug targets for antibiotics / V. Panchal, R. Brenk // Antibiotics (Basel). – 2021. – Vol. 10(1): 45.

Genome-wide discovery of structured noncoding RNAs in bacteria / S. Stav [et al.] // BMC Microbiol. – 2019. – Vol. 19: 66.

A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer / R.M. Atilho [et al.] // Elife. – 2019. – Vol. 8: e45210.

A novel transcriptional regulator related to thiamine phosphate synthase controls thiamine metabolism genes in Archaea / D.A. Rodionov [et al.] // J. Bacteriol. – 2017. – Vol. 199(4): e00743-16.

Nosaka, K. Recent progress in understanding thiamine biosynthesis and its genetic regulation in Saccharomyces cerevisiae / K. Nosaka // Appl. Microbiol. Biotechnol. – 2006. – Vol. 72. – P. 30–40.

Facilitated recruitment of Pdc2p, a yeast transcriptional activator, in response to thiamine starvation / K. Nosaka [et al.] // FEMS Microbiol. Lett. – 2012. – Vol. 330. – P. 140–147.

References

Makarchikov A.F. Vitamin B1: metabolism and functions. Biochemistry (Moscow). Suppl. Ser. B: Biomed. Chem., 2009, vol. 3. pp. 116–128.

ExplorEnz – The Enzyme Database. Available at: https://www.enzyme-database.org. (accessed: 22.11.2021).

Makarchikov A.F. Lakaye B., Gulyai I.E., Czerniecki J., Coumans B., Wins P., Crisar T., Bettendorff L. Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals. Cell. Mol. Life Sci., 2003, vol. 60, pp. 1477–1488.

Bettendorff L., Witzerfild B., Makarchikov A.F., Mazzucchelli G., Frédérich M., Gigliobianco T., Gandolf M., De Pauw E., Angelot L., Wins P. Discovery of a natural thiamine adenine nucleotide. Nat. Chem. Biol., 2007, vol. 3, pp. 211–212.

Lakaye B., Wirtzfeld B., Wins P., Grisar T., Bettendorff L. Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation. J. Biol. Chem., 2004, vol. 279, pp. 1714217147.

Gigliobianco T., Lakaye B., Wins P., El Moualij B., Zorzi W., Bettendorff L. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress. BMC Microbiol., 2010, vol. 10: 148.

Gigliobianco T., Gangolf M., Lakaye B., Pirson B., von Ballmoos C., Wins P., Bettendorff L. An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate. Sci. Rep., 2013, vol. 3: 1071.

Makarchikov A.F., Brans A., Bettendorff L. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate. BMC Biochem., 2007, vol. 8:17.

Bettendorff L., Lakaye B., Kohn G., Wins P. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role. Metab. Brain Dis., 2014, vol. 29, pp. 1069–1082.

Gangolf M., Wins P., Thiry M., El Moualij B., Bettendorff L. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain. J. Biol. Chem., 2010, vol. 285, pp. 583–594.

Miyoshi K., Egi Y., Shioda T., Kawasaki T. Evidence for in vivo synthesis of thiamin triphosphate by cytosolic adenylate kinase in chicken skeletal muscle. J. Biochem., 1990, vol. 108, pp. 267-270.

Zhao R., Goldman D.I. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol. Aspects Med., 2013, vol. 34, pp. 373–385.

Maupin-Furlow, J.A. Vitamin B1 (thiamine) metabolism and regulation in Archaea. B Group Vitamins-Current Uses and Perspectives, InTech, 2018, pp. 9–31.

Nosaka K. Recent progress in understanding thiamine biosynthesis and its genetic regulation in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 2006, vol. 72, pp. 30–40.

Settembre E., Begley T.P., Ealick S.E. Structural biology of enzymes of the thiamin biosynthesis pathway. Curr. Opin. Struct. Biol., 2003, vol. 13, pp. 739–747.

Fitzpatrick T.B., Thore S. Complex behavior: from cannibalism to suicide in the vitamin B1 biosynthesis world. Curr. Opin. Struct. Biol. 2014, vol. 29, pp. 34–43.

Begley T.P., Ealick S.E., McLafferty F.W. Thiamin biosynthesis – still yielding fascinating biological chemistry. Biochem. Soc. Trans., 2012, vol. 40, pp. 555–560.

Du Q., Wang H., Xie J. Thiamin (vitamin B1) biosynthesis and regulation: a rich source of anti-microbial drug targets? Int. J. Biol. Sci., 2011, vol. 7, pp. 41–52.

Goyer A. Thiamine in plants: aspects of its metabolism and functions. Phytochemistry, 2010, vol. 71, pp. 1615–1624.

Kowalska E., Kozik A. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts. Cell. Mol. Biol. Lett., 2008, vol. 13, pp. 271–282.

Jurgenson C.T., Begley T.P., Ealick S.E. The structural and biochemical foundations of thiamin biosynthesis. Annu. Rev. Biochem., 2009, vol. 78, pp. 569–603.

Hazra A.B., Han Y., Chatterjee A., Zhang Y., Lai R.-Y., Ealick S.E., Begley T.P. A missing enzyme in thiamin thiazole biosynthesis: identification of TenI as a thiazole tautomerase. J. Am. Chem. Soc., 2011, vol. 133, pp. 9311–9319.

Challand M.R., Martins F.T., Roach P.L. Catalytic activity of the anaerobic tyrosine lyase required for thiamine biosynthesis in Escherichia coli. J. Biol. Chem., 2010, vol. 285, pp. 5240–5248.

Leonardi R., Fairhurst S.A., Kriek M., Lowe D.J., Roach P.L. Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex. FEBS Lett., 2003, vol. 539, pp. 95–99.

Palenchar P.M., Buck C.J., Cheng H., Larson T.J., Mueller E.G. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J. Biol. Chem., 2000, vol. 275, pp. 8283–8286.

Palmer L.D., Leung M.H., Downs D.M. The cysteine desulfhydrase CdsH is conditionally required for sulfur mobilization to the thiamine thiazole in Salmonella enteric. J. Bacteriol., 2014, vol. 196, pp. 3964–3970.

Mizote T., Tsuda M., Smith D.D.S., Nakayama H., Nakazawa, T. Cloning and characterization of the thiD/J gene of Escherichia coli encoding a thiamin-synthesizing bifunctional enzyme, hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase. Microbiology, 1999, vol. 145, pp. 495–501.

Reddick J.J., Saha S., Lee J.-m., Melnick J.S., Perkins J., Begley T.P. The mechanism of action of bacimethrin, a naturally occurring thiamin antimetabolite. Bioorg. Med. Chem. Lett., 2001, vol. 11, pp. 2245–2248.

Thamm A.M., Li G., Taja-Moreno M., Gerdes S.Y., de Crécy-Lagard V., Bruner S.D., Hanson A.D. A strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes damaging errors in thiamin biosynthesis. Biochem J., 2017, vol. 474, pp. 2887–2895.

Morett E., Saab-Rincón G., Olvera L., Olvera M., Flores H., Grande R. Sensitive genome-wide screen for low secondary enzymatic activities: the YjbQ family shows thiamin phosphate synthase activity. J. Mol. Biol., 2008, vol. 376, pp. 839–853.

Nakayama H., Hayashi R. Biosynthesis of thiamine pyrophosphate in Escherichia coli. J. Bacteriol., 1972. vol. 109, pp. 936-938.

Webb E., Downs D. Characterization of thiL, encoding thiamin-monophosphate kinase, in Salmonella typhimurium. J. Biol. Chem., 1997, vol. 272, pp. 15702-15707.

Sanemori H., Egi Y., Kawasaki T. Pathway of thiamine pyrophosphate synthesis in Micrococcus denitrificans. J. Bacteriol., 1976, vol. 126, pp. 1030–1036.

Sanemori H., Kawasaki T. Purification and properties of thiamine pyrophosphokinase in Paracoccus denitrificans. J. Biochem., 1980, vol. 88, pp. 223-230.

Müller I.B., Bergmann B., Groves M.R., Couto I., Amaral L., Begley T.P., Walter R.D., Wrenger C. The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels. PLoS ONE, 2009, vol. 4(11): e7656.

Hasnain G., Roje G., Sa N., Zallo R., Ziemak M.J., de Crecy-Lagard V., Gregory J.F. III, Hanson A.D. Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis. Biochem. J., 2016, vol. 473, pp. 157–166.

Barra A.L.C., Dantas L.O.C., Morão L.G., Gutierrez R.F., Polikarpov I., Wrenger C., Nascimento A.S. Essential metabolic routes as a way to ESKAPE from antibiotic resistance. Front. Public Health, 2020, vol. 8: 26.

Kim H.J., Lee H., Lee Y., Choi I., Ko Y., Lee S., Jang S. The ThiL enzyme is a valid antibacterial target essential for both thiamine biosynthesis and salvage pathways in Pseudomonas aeruginosa. J. Biol. Chem., 2020, vol. 295, pp. 10081–10091.

Chatterjee A., Abeydeera N.D., Bale S., Pai P.-J., Dorrestein P.C., Russell D.H., Ealick S.E., Begley T.P. Saccharomyces cerevisiae THI4p is a suicidal thiamin thiazole synthase. Nature, 2011, vol. 478, pp. 542–546.

Machado C.R., Praekelt U.M., de Oliveira R.C., Barbosa A.C., Byrne K.L., Meacock P.A., Menck C.F. Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. J. Mol. Biol., 1997, vol. 273, pp. 114–121.

Song Z., Pan J., Xie L., Gong G., Han S., Zhang W., Hu Y. Expression, purification, and activity of ActhiS, a thiazole biosynthesis enzyme from Acremonium chrysogenum. Biochemistry (Mosc)., 2017, vol. 82, pp. 852–860.

Faou P., Tropschug M. Neurospora crassa CyPBP37: a cytosolic stress protein that is able to replace yeast Thi4p function in the synthesis of vitamin B1. J. Mol. Biol., 2004, vol. 344, pp. 1147–1157.

Wightman, R. P.A. Meacock. The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine. Microbiology, 2003, vol. 149, pp. 1447–1460.

Llorente B., Fairhead C., Dujon B. Genetic redundancy and gene fusion in the genome of the Baker's yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. Mol. Microbiol., 1999, vol. 32, pp. 1140–1152.

Lai R.-Y., Huang S., Fenwick M.K., Hazra A., Zhang Y., Rajashankar K., Philmus B., Kinsland C., Sanders J.M., Ealick S.E., Begley T.P. Thiamin pyrimidine biosynthesis in Candida albicans: a remarkable reaction between histidine and pyridoxal phosphate. J. Am. Chem. Soc., 2012, vol. 134, pp. 9157–9159.

Kawasaki Y. Copurification of hydroxyethylthiazole kinase and thiamine-phosphate pyrophosphorylase of Saccharomyces cerevisiae: characterization of hydroxyethylthiazole kinase as a bifunctional enzyme in the thiamine biosynthetic pathway. J. Bacteriol., 1993, vol. 175, pp. 5153-5158.

Paxhia M.D., Swanson M.S., Downs D.M. Functional characterization of the HMP-P synthase of Legionella pneumophila (Lpg1565). Mol. Microbiol., 2021, vol. 115, pp. 539–553.

Nosaka K., Kaneko Y., Nishimura H., Iwashima A. Isolation and characterization of a thiamine pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. J. Biol. Chem., 1993, vol. 268, pp. 17440–17447.

Fankhauser H., Zurlinden A., Schweingruber A.M., Edenharter E., Schweingruber M.E. Schizosaccharomyces pombe thiamine pyrophosphokinase is encoded by gene tnr3 and is a regulator of thiamine metabolism, phosphate metabolism, mating, and growth. J. Biol. Chem., 1995, vol. 270, pp. 28457–28462.

Coquille S., Roux C., Mehta A., Begley T.P., Fitzpatrick T.B., Thore S. High-resolution crystal structure of the eukaryotic HMP-P synthase (THIC) from Arabidopsis thaliana. J. Struct. Biol., 2013, vol. 184, pp. 438–444.

Ajjawi I., Tsegaye Y., Shintani D. Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1. Arch. Biochem. Biophys., 2007, vol. 459, pp. 107–114.

Rapala-Kozik M., Olczak M., Ostrowska K., Starosta A., Kozik A. Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities. Biochem. J., 2007, vol. 408, pp.149–159.

Mangel N., Fudge J.B., Fitzpatrick T.B., Gruissem W., Vanderschuren H. Vitamin B1 diversity and characterization of biosynthesis genes in cassava. J. Exp. Bot., 2017, vol. 68, pp. 3351–3363.

Gerdes S., Lerma-Ortiz C, Frelin O., Seaver S.M.D., Henry C.S., de Crécy-Lagard V., Hanson A.D. Plant vitamin B pathways and their compartmentations: a guide for the perplexed. J. Exp. Bot., 2012, vol. 63, pp. 5379–5395.

Mimura M. Zallotb R., Niehausa T.D., Hasnaina G., Giddac S.K., Nguyenc T.N.D., Andersonc E.M., Mullenc R.T., Brownd G., Yakunind A.F., de Crécy-Lagardb V., Gregory J.F. III, McCartya D.R., Hanson A.D. Arabidopsis TH2 encodes the orphan enzyme thiamin monophosphate phosphatase. Plant Cell, 2016, vol. 28, pp. 2683–2696.

W.Y. Hsieh., Liao J.-C., Wang H.-T., Hung T.-H., Tseng C.-C., Chung T.-Y., Hsieh M.-H. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B(1) biosynthesis pathway. Plant J., 2017, vol. 91, pp. 145–157.

Hsieh P.H., Chung Y.H., Lee K.T., Wang S.Y., Lu C.A., Hsieh M.H. The rice PALE1 homolog is involved in the biosynthesis of vitamin B1. Plant Biotechnol. J., 2021, vol. 19, pp. 218–220.

Guan J.-C., Hasnain G., Garrett T.J., Chase C.D., Gregory J., Hanson A.D., McCarty D.R. Divisions of labor in the thiamin biosynthetic pathway among organs of maize. Front. Plant Sci., 2014, vol. 5: 370.

Joshi J., Beaudoin G.A.W., Patterson J.A., García-García J.D., Belisle C.E., Chang L.-Y., Li L., Duncan O., Millar A.H., Hanson A.D. Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s. Biochem. J., 2020, vol. 477, pp. 2055–2069.

Nelson C.J., Alexova R., Jacoby R.P., Millar A.H. Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. Plant Physiol., 2014, vol. 166, pp. 91–108.

Li L., Nelson C.J., Trösch J., Castleden I., Huang S., Millar A.H. Protein degradation rate in Arabidopsis thaliana leaf growth and development. Plant Cell., 2017, vol. 29, pp 207–228.

Palmer L.D., Downs D.M. The thiamine biosynthetic enzyme ThiC catalyzes multiple turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites. J. Biol. Chem., 2013, vol. 288, pp. 30693–30699.

Hanson A.D., Amthor J.S., Sun J., Niehaus T.D., Gregory J.F. 3rd, Bruner S.D., Ding Y. Redesigning thiamin synthesis: Prospects and potential payoffs. Plant Sci., 2018, vol. 273, pp. 92–99.

Fitzpatrick T.B., Chapman L.M. The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification. J. Biol. Chem., 2020, vol. 295, pp. 12002-112013.

Goyer A. Thiamin biofortification of crops. Curr. Opin. Biotechnol., 2017, vol. 44, pp. 1–7.

Minhas A.P., Tuli R., Puri S. Pathway editing targets for thiamine biofortification in rice grains. Front. Plant Sci., 2018, vol. 9: 975.

Strobbe S., Verstraete J., Stove C., Van Der Straeten D. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. Plant Biotechnol. J., 2021, vol. 19, pp. 1253–1267.

Rodionov D.A., Vitreschak A.G., Mironov A.A., Gelfand M.S. Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J. Biol. Chem., 2002, vol. 277, pp. 48949–48959.

Morett E., Korbel J.O., Rajan E., Saab-Rincon G., Olvera L., Olvera M., Schmidt S., Snel B., Bork P. Systematic discovery of analogous enzymes in thiamin biosynthesis. Nat. Biotechnol., 2003, vol. 21, pp. 790–795.

Hwang S., Cordova B., Abdo M., Pfeiffer F., Maupin-Furlow J.A. ThiN as a versatile domain of transcriptional repressors and catalytic enzymes of thiamine biosynthesis. J. Bacteriol., 2017, vol. 199(4): e00743-16.

Hayashi M., Kobayashi K., Esaki H., Konno H., Akaji K., Tazuya K., Yamada K., Nakabayashi T., Nosaka K. Enzymatic and structural characterization of an archaeal thiamin phosphate synthase. Biochim. Biophys. Acta, 2014, vol. 1844, pp. 803–809.

Kijima Y., Hayashi M., Yamada K., Tazuya-Murayama K. The biosynthesis of the pyrimidine moiety of thiamin in Halobacterium salinarum. J. Nutr. Sci. Vitaminol. (Tokyo), 2016, vol. 62, pp. 130–133.

Eser B.E., Zhang X., Chanani P.K., Begley T.P., Ealick S.E. From suicide enzyme to catalyst: the iron-dependent sulfide transfer in Methanococcus jannaschii thiamin thiazole biosynthesis. J. Am. Chem. Soc., 2016, vol. 138, pp. 3639–3642.

Hayashi M., Kijima Y., Tazuya-Murayama K., Yamada K. The biosynthesis of the thiazole moiety of thiamin in the archaeon Halobacterium salinarum. J. Nutr. Sci. Vitaminol. (Tokyo), 2015, vol. 61, pp. 270–274.

Hwang S., Cordova B., Chavarria N., Elbanna D., McHugh S., Rojas J., Pfeiffer F., Maupin-Furlow J.A. Conserved active site cysteine residue of archaeal THI4 homolog is essential for thiamine biosynthesis in Haloferax volcanii. BMC Microbiol., 2014, vol. 14(1): 260.

Zhang X., Eser B.E., Chanani P.K., Begley T.P., Ealick S.E. Structural basis for iron-mediated sulfur transfer in archael and yeast thiazole synthases. Biochemistry, 2016, vol. 55, pp. 1826–1838.

Sun J., Sigler C.L., Beaudoin G.A.W., Joshi J., Patterson J.A., Cho K.H., Ralat M.A., Gregory J.F. 3rd, Clark D.G., Deng Z., Colquhoun T.A., Hanson A.D. Parts-prospecting for a high-efficiency thiamin thiazole biosynthesis pathway. Plant Physiology, 2019, vol. 179, pp. 958–968.

Joshi J., Li Q., García-García J.D., Leong B.J., Hu Y., Bruner S.D., Hanson A.D. Structure and function of aerotolerant, multiple-turnover THI4 thiazole synthases. Biochem J., 2021, vol. 478, pp. 3265–3279.

Hayashi M., Nosaka K. Characterization of thiamin phosphate kinase in the hyperthermophilic archaeon Pyrobaculum calidifontis. J. Nutr. Sci. Vitaminol. (Tokyo), 2015, vol. 61, pp. 369–374.

Jenkins A.H., Schyns G., Potot S., Sun G., Begley T.P. A new thiamin salvage pathway. Nat. Chem. Biol., 2007, vol. 3, pp. 492–497.

Mizote T., Nakayama H. The thiM locus and its relation to phosphorylation of hydroxyethylthiazole in Escherichia coli. J. Bacteriol.. 1989, vol. 171, pp. 3228–3232.

Tani Y., Kimura K., Mihara H. Purification and properties of 4-methyl-5-hydroxyethylthiazole kinase from Escherichia coli. Bioscience, Biotechnology, and Biochemistry, 2016, vol. 80, pp. 514–517.

French J.B., Begley T.P., Ealick S.E. Structure of trifunctional THI20 from yeast. Acta Cryst., 2011, vol. D67. pp. 784–791.

Benach J., Edstrom W.C., Lee I., Das K., Cooper B., Xiao R., Liu J., Rost B., Acton T.B., Montelione G.T., Hunt J.F. The 2.35 A structure of the TenA homolog from Pyrococcus furiosus supports an enzymatic function in thiamine metabolism. Acta Crystallogr. D. Biol. Crystallogr., 2005, vol. 61, pp. 589–598.

Yazdani M., Zallot R., Tunc-Ozdemir M., de Crécy-Lagard V., Shintani D.K., Hanson A.D. Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize. Phytochemistry, 2013, vol. 94, pp. 68–73.

Zallot R., Yazdani M., Goyer A., Ziemak M.J., Guan J.-C., McCarty D.R., de Crecy-Lagard V., GerdesS., Timothy J., Garrett T.J., Benach J., Hunt J.F., Shintani D.K., Hanson A.D. Salvage of the thiamin pyrimidine moiety by plant TenA proteins lacking an active-site cysteine. Biochem. J., 2014, vol. 463, pp. 145–155.

Melnick J., Lis E., Park J.-H., Kinsland C., Mori H., Baba T., Perkins J., Schyns G., Vassieva O., Osterman A., Begley T.P. Identification of the two missing bacterial genes involved in thiamine salvage: thiamine pyrophosphokinase and thiamine kinase. J. Bacteriol., 2004, vol. 186, pp. 3660–3662.

Wrenger C., Eschbach M.-L., Muller I.B., Laun N.P., Begley T.P., Walter R.D. Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine. Biol. Chem., 2006, vol. 387, pp. 41–51.

Carini P., Campbell E.O, Morre J., Sanudo-Wilhelmy S.A., Thrash J.C., Bennett S.E., Temperton B., Begley T., Giovannoni S.J. Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea. ISME J., 2014, pp. 1–12.

Paerl R.W., Bertrand E.M., Rowland E., Schatt P., Mehiri M., Niehaus T.D., Hanson A.D., Riemann L., Bouget F.-Y. Carboxythiazole is a key microbial nutrient currency and critical component of thiamin biosynthesis. Sci. Rep., 2018, vol. 8: 5940.

McRose D., Guo J., Monier A., Sudek S., Wilken S., Yan S., Mock T., Archibald J.M., Begley T.P., Reyes-Prieto A., Worden A.Z. Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages. ISME J., 2014, vol. 8, pp. 2517–2529.

Toms A.V., Haas A.L., Park J.-H., Begley T.P., Ealick S.E. Structural characterization of the regulatory proteins TenA and TenI from Bacillus subtilis and identification of TenA as a thiaminase II. Biochemistry, 2005, vol. 44, pp. 2319–2329.

Onozuka M., Konno H., Kawasaki Y., Akaji K., Kazuto Nosaka K. Involvement of thiaminase II encoded by theTHI20 gene in thiamin salvage of Saccharomyces cerevisiae. FEMS Yeast Res., 2008, vol. 8, pp. 266–275.

Kreinbring C.A., Remillard S.P., Hubbarda P., Brodkina H.R., Leeperc F.J., Hawksleyc D., Laib E.L., Fultonb C., Petskoa G.A., Ringe D. Structure of a eukaryotic thiaminase I. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 137–142.

Kraft C.E., Gordon E.R.L., Angert E.R. A rapid method for assaying thiaminase I activity in diverse biological samples. PLoS ONE, 2014, vol. 9(3): e92688.

Müller I.B., Bergmann B., Groves M.R., Couto I., Amaral L., Begley T.P., Walter R.D., Wrenger C. The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels. PLoS ONE, 2009, vol. 4(11): e7656.

Li M., Petteys B.J., McClure J.M., Valsakumar V., Bekiranov S., Frank E.L., Smith J.S. Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol. Cell. Biol., 2010. vol. 30, pp. 3329–3341.

Miranda-Rios J. The THI-box riboswitch, or how RNA binds thiamin pyrophosphate. Structure, 2007, vol. 15, pp. 259–265.

Wachter A. Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol., 2010, vol. 7, pp. 67–76.

Bocobza S.E., Aharoni A. Small molecules that interact with RNA: riboswitch-based gene control and its involvement in metabolic regulation in plants and algae. Plant J., 2014, vol. 79, pp. 693–703.

Bocobza S., Adato A., Mandel T., Shapira M., Nudler E., Aharoni A. Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev., 2007, vol. 21, pp. 2874–2879.

Croft M.T., Moulin M., Webb M.E., Smith A.G. Thiamine biosynthesis in algae is regulated by riboswitches. Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 20770–20775.

Moldovan M.A., Petrova S.A., Gelfand M.S. Comparative genomic analysis of fungal TPP-riboswitches. Fungal Genet. Biol., 2018, vol. 114, pp. 31–41.

Cheah M.T., Wachter A., Sudarsan N., Breaker R.R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature, 2007, vol. 447, pp. 497–500.

Mukherjee S., Retwitzer M.D., Barash D., Sengupta S. Phylogenomic and comparative analysis of the distribution and regulatory patterns of TPP riboswitches in fungi. Sci. Rep., 2018, vol. 8: 5563.

Sudarsan N., Barrick J.E., Breaker R.R. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA, 2003, vol. 9, pp. 644–647.

Kubodera T., Watanabe M., Yoshiuchi K., Yamashita N., Nishimura A., Nakai S., Gomi K., Hanamoto H. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5'-UTR. FEBS Lett, 2003, vol. 555, pp. 516–520.

Panchal V., Brenk R. Riboswitches as drug targets for antibiotics. Antibiotics (Basel), 2021, vol. 10(1): 45.

Stav S., Atilho R.M., Mirihana Arachchilage G., Nguyen G., Higgs G., Breaker R.R. Genome-wide discovery of structured noncoding RNAs in bacteria. BMC Microbiol., 2019, vol. 19: 66.

Atilho R.M., Mirihana Arachchilage G., Greenlee E.B., Knecht K.M., Breaker R.R. A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer. eLife, 2019, Vol. 8: e45210.

Rodionov D.A., Leyn S.A., Li X., Rodionova I.A. A novel transcriptional regulator related to thiamine phosphate synthase controls thiamine metabolism genes in Archaea. J. Bacteriol., 2017, vol. 199(4): e00743-16.

Nosaka K. Recent progress in understanding thiamine biosynthesis and its genetic regulation in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 2006, vol. 72, pp. 30–40.

Nosaka K., Esaki H., Onozuka M., Konno H., Hattori Y., Akaji K. Facilitated recruitment of Pdc2p, a yeast transcriptional activator, in response to thiamine starvation. FEMS Microbiol. Lett., 2012, vol. 330, pp. 140–147.

Загрузки

Опубликован

2022-01-27

Выпуск

Раздел

Биологические науки