Биоразнообразие микробного сообщества винограда культурного (Vitis vinifera)

Авторы

  • Н.Н. Волынчук Полесский государственный университет, г. Пинск, Республика Беларусь
  • О.Н. Жук Полесский государственный университет, г. Пинск, Республика Беларусь

Ключевые слова:

Vitis vinifera, ризосфера, эндосфера, филлосфера, бактериом, микобиом, терруар

Аннотация

Полесский регион является ведущим регионом промышленного виноградарства в Республике Беларусь. Природные и климатические условия благоприятствуют выращиванию здесь высококачественных сортов винограда, которые могут конкурировать с зарубежной продукцией.

По современным представлениям, любое растение и ассоциированную с ним микробиоту можно рассматривать как единый экологический комплекс, связанный тесными взаимодействиями. Такие ассоциации могут помочь растениям-хозяевам адаптироваться к изменяющимся условиям окружающей среды. Каждому виду или близким видам растений присущ свой специфический комплекс микроскопических бактерий и грибов, которые по способности освоения разнообразных экологических ниш не имеют себе равных.

В статье представлены данные о количественной и качественной структуре эпифитных и эндофитных микроорганизмов разных экониш винограда культурного. Доказана важность изучения корневого сообщества ввиду вертикального движения по сосудистой системе к филлосфере.

Биографии авторов

Н.Н. Волынчук, Полесский государственный университет, г. Пинск, Республика Беларусь

аспирант

О.Н. Жук, Полесский государственный университет, г. Пинск, Республика Беларусь

канд. биол. наук, доцент, доцент кафедры биотехнологии

Библиографические ссылки

Bokulich, N.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate / N.A. Bokulich, J.H. Thorngate, P.M. Richardson // Proc. Natl. Acad. Sci. – 2014. – Vol.111. – P. 139–48.

Олешук, E.Н. Научные проблемы интродукции и освоения промышленной технологии выращивания винограда в условиях Беларуси / Е.Н. Олешук, Е.Г. Попов, Т.Г. Янчевская // Проблемы сохранения биологического разнообразия и использования биологических ресурсов: тез. докл. 2-й Междунар. конф. (Минск, 22-26 октября 2012). – Мн.: РУП Минсктиппроект, 2012. – С. 482–485.

Олешук, Е.Н. Промышленный виноградник на Полесье / Е.Н. Олешук, Е.Г. Попов // Хозяин. – 2012. – № 11 (894). – С. 8–9.

Соболев, С.Ю. Выращивание винограда в Беларуси: популярные сорта / С.Ю. Соболев – Мн.: Сэр-Вит, 2010. – 64 с.

Адамович В. Пинский опорный пункт по винограду и другим южным культурам / В. Адамович [Электронный ресурс]. – Режим доступа: http://myvinogradnik.ru/pinskij-opornyj-punkt-po-vinogradu-i-drugim-yuzhnym-kulturam/. – Дата доступа: 16.03.2021.

Тышкевич, Н. Где лозе виться? [электронный ресурс] – Режим доступа: https://www.sb.by/articles/gde-loze-vitsya.html. – Дата доступа: 03.04.2022.

Bulgarelli, D. Structure and functions of the bacterial microbiota of plants / D. Bulgarelli, K. Schlaeppi, S. Spaepen // Annual Review of Plant Biology. – 2013. – Vol. 64. – P. 807–838.

Compant, S. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization / S. Compant // Soil Biol. Biochem. – 2010. – Vol. 42. – P. 669–678.

Rosenberg, E. Microbes drive evolution of animals and plants: the hologenome concept / E. Rosenberg, I. Zilber-Rosenberg // mBio. – 2016. – Vol. 7. DOI: 10.1128/ mBio.01395-15

Leveau, J.H.J. Grapevine microbiomics: bacterial diversity on grape leaves and berries revealed by high-throughput sequence analysis of 16s RRNA amplicons / J.H.J. Leveau, J.J. Tech // Acta Hortic. – 2011. – Vol. 905. – P. 31–42.

Pinto, C. Unravelling the diversity of grapevine microbiome / C. Pinto, D. Pinho, S. Sousa // PLoS ONE. – 2014. – Vol. 9(1). – P. 1–12.

Белкина, Д.Д. Состав и значение бактериальных сообществ в агроэкосистемах винограда / Д.Д. Белкина, Е.Г. Юрченко // Плодоводство и виноградарство Юга России. – 2021. – № 68(2). – С. 272–286.

Almario, J. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina andits contribution to plant phosphorus nutrition / G. Jeena, J. Wunder, G. Langen // Proc. Natl. Acad. Sci. U.S.A. – 2014. – Vol. 114. – P. 9403–9412.

Alvarez-Perez, J. Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline / J. Alvarez-Perez // Applied and Environmental Microbiology. – 2017. –

White, R.E. The value of soil knowledge in understanding wine terroir / R.E. White // Front. Environ Sci. – 2020. – No. 8. – P. 1–6.

Zarraonaindia, I. The soil microbiome influences grapevine-associated microbiota / I. Zarraonaindia, S. M. Owens, P. Weisenhorn // mBio. – 2015. – Vol. 6(2). – P. 1–11.

Coince, A. Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns / A. Coince, T. Cordier, J. Lengelle // PLoS One. – 2014. – Vol. 9(6). – P. 1–10.

Compant, S. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues / S. Compant, H. Kaplan, A. Sessitsch // FEMS Microbiol. Ecol. – 2008. – Vol. 63. – P. 84–93.

Guyonnet, J.P. Plant nutrient resource use strategies shape active rhizosphere microbiota through root exudation / J.P. Guyonnet, M. Guillemet, A. Dubost // Front. Plant Sci. – 2018. – Vol. 9.

Hacquard, S. Interplay between innate immunity and the plant microbiota / S. Hacquard, S. Spaepen, R. Garrido-Oter // Ann. Rev. Phytopathol. – 2017. – Vol. 55. – P. 565–589.

Herz, K. Linking root exudates to functional plant traits / K. Herz, S. Dietz, K. Gorzolka // PLoS One. – 2018. – Vol. 13(10). – P. 1–14.

Pascale, A. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion / A. Pascale, S. Proietti, I.S. Pantelides // Frontiers in Plant Science. – 2020. – Vol. 10. – P. 1–23.

Ollat, N. Grapevine rootstocks: origins and perspectives / N. Ollat, L. Bordenave, J.P. Tandonnet // Acta Hortic. – 2016. – Vol. 1136. – P. 11–22.

Andreolli, M. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control / M. Andreolli, S. Lampis, G. Zapparoli, E. Angelini // Microbiological Research. – 2015. – P. 1–37.

Berendsen, R.L. The rhizosphere microbiome and plant health / R.L. Berendsen, C.M. Pieterse, P.A. Bakker // Trends Plant Sci. – 2012. – Vol. 17. – P. 478–486.

Toju, H. Network modules and hubs in plant-root fungal biome / H. Toju, S. Yamamoto, A.S. Tanabe // J. R. Soc. Interface. – 2016. – Vol. 13.

Berg, G. Unraveling the plant microbiome: looking back and future perspectives / G. Berg, M. Grube, M. Schloter // Front. Microbiol. – 2014. – Vol. 5. – P. 148.

Coskun, D. How plant root exudates shape the nitrogen cycle / D. Coskun, D.T. Britto, W.M. Shi // Trends Plant Sci. – 2017. – Vol. 22. – P. 661–673.

Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome / N. Fierer // Nat. Rev. Microbiol. – 2017. – Vol. 15. – P. 579–590.

Munakata, R. Polyphenols from plant roots / R. Munakata, R. Larbat, L. Duriot // Recent Adv. Polyphen. Res. – 2019. – Vol. 6. – P. 207–236.

Coskun, D. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition / D. Coskun, D.T. Britto, W.M. Shi // Nat. Plants. – 2017. – Vol. 3.

Toju, H. Factors influencing leaf- and root-associated communities of bacteria and fungi across 33 plant orders in a Grassland / H. Toju // Frontiers in Microbiology. – 2019. – Vol. 10. – P. 1–14.

Ghatak, A. Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat / A. Ghatak, P. Chaturvedi, G. Bachmann // Front. Plant Sci. – 2021. – Vol. 13(11). –

Deyett, E. Endophytic microbial assemblage in grapevine / E. Deyett, P.E. Rolshausen // FEMS Microbiol. Ecol. – 2020. – Vol. 96. – P. 53.

Zahid, M. Comparative fungal diversity and dynamics in plant compartments at different developmental stages under root-zone restricted grapevines / M. Zahid, H. Javed // BMC Microbiology. – Vol. 21(1). – P. 2–16. DOI:10.1186/s12866-021-02376-y

Berlanas, C. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards / C. Berlanas, M. Berbegal // Frontiers in Microbiology. – 2019. – Vol. 10. DOI:10.3389/fmicb.2019.01142

Martinez-Diz, M.P. Soil-plant compartments affect fungal microbiome diversity and composition in grapevine / M.P. Martinez-Diz, M. Andres-Sodupe, R. Bujanda // Fungal Ecol. – 2019. – Vol. 41. – P. 234–44. DOI: 10.1016/j.funeco.2019.07.003

Marasco, R. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality / R. Marasco, E. Rolli, M. Fusi // Microbiome, – 2018. – Vol. 6(1). – P. 3.

Novello, G. The rhizosphere bacterial microbiota of Vitis vinifera cv. Pinot Noir in an integrated pest management vineyard / G. Novello, E. Gamalero, E. Bona // Front. Microbiol. – Vol. 8. –

Liu, D.N. Community succession of the grapevine fungal microbiome in the annual growth cycle / D. Liu, K. Howell // Environ. Microbiol. – 2021. – Vol. 23. – P. 1842–1857. DOI:10.1101/2020.05.03.075457

Dries, L. Rootstocks shape their microbiome - bacterial communities in the rhizosphere of different grapevine rootstocks / L. Dries, S. Bussotti, C. Pozzi // FDW. – 2021.

Samad, A. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants / A. Samad, F. Trognitz, S. Compant // Environ Microbiol. – 2017. – Vol. 19. – P. 1407–1424. DOI:10.1111/1462-2920.13618

Wei, Y. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China / Y. Wei, Y. Wu, Y. Yan // PLoS ONE. – 2018. DOI:10.1371/journal.pone.0193097

Cureau, N. Year, location, and variety impact on grape-, soil-, and leaf-associated fungal microbiota of Arkansas-Grown table grapes / N. Cureau, R. Threlfall, M. Savin // Microbial ecology. – 2021. DOI:10.1007/s00248-021-01698-

Wright А. A characterization of a cool climate organic vineyard’s microbiome / A. Wright, A. Shawkat // Phytobiomes Journal. – Vol. 3. DOI:10.1094/pbiomes-03-21-0019-r

Волынчук, Н.Н. Ризосфера и ризоплана винограда культурного / Н.Н. Волынчук // Научный потенциал молодежи – будущему Беларуси: материалы XV международной молодежной научно–практической конференции, Пинск, 9 апреля 2021 г.: в 2-х ч. / Министерство образования Республики Беларусь [и др.]; редкол.: В.И. Дунай [и др.]. – Пинск: ПолесГУ, 2021. – Ч. 2. – С. 72–75.

Волынчук, Н.Н. Мицелиальные и немицелиальные грибы ризопланы и эндосферы корней винограда культурного (Vitis vinifera) / Н.Н. Волынчук, О.Н. Жук // Опыт и перспективы выращивания нетрадиционных ягодных растений на территории Беларуси и сопредельных стран: материалы Международного научно-практического семинара, Минск-Ганцевичи, 28 сентября-1 октября 2021 г. / Национальная академия наук Беларуси, Центральный ботанический сад; редкол.: В. В. Титок [и др.]. – Минск: Медисонт, 2021. – С. 24–29.

Zarraonaindia, I. Understanding grapevine-microbiome interactions: implications for viticulture industry / I. Zarraonaindia, J.A. Gilbert // Microb. Cell. – 2015. – Vol. 2. – P. 171–173.

Baldan, E. Identification of culturable bacterial endophyte community isolated from tissues of Vitis vinifera «Glera» / E. Baldan, S. Nigris, F. Populin // Plant Biosyst. – 2014. – Vol. 148. – P. 508–516.

Hirano, S.S. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte / S.S. Hirano // Microbiol. Mol. Biol. Rev. – 2000. Vol. 64(3). – P. 624–653. DOI: 10.1128/MMBR.64.3.624-653.2000.

Mitchell, J.I. Sequences, the environment and fungi / J.I. Mitchell // Mycologist. – 2006. – Vol. 20. – P. 62–74. DOI: 10.1016/j.mycol.2005.11.004

Jha, P. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation / P. Jha, J. Panwar, P.N. Jha // Int. J. Environ. Sci. – 2018. – Vol. 12. – P. 789–802.

Oburger, E. Sampling root exudates – mission impossible? / E. Oburger, D.L. Jones // Rhizosphere. – 2018. – Vol. 6 – P. 116–133.

Pieterse, C.M. Induced systemic resistance by beneficial microbes / C.M. Pieterse, C. Zamioudis, R. L.Berendsen //Ann. Rev. Phytopathol. – 2014. – Vol. 52. – P. 347–375.

Bona, E.N. Metaproteomic characterization of the Vitis vinifera rhizosphere / // E. Bona, E.N. Massa // EMS Microbiology Ecology. – 2018. DOI:10.1093/femsec/fiy204

D’Amico, F. The rootstock regulates microbiome diversity in root and rhizosphere compartments of Vitis vinifera cultivar Lambrusco / F. D’Amico, M. Candela // Front. Microbiol. – 2018. – Vol. 9. DOI:10.3389/fmicb.2018.02240

Bruez, E. Major changes in grapevine wood microbiota are associated with the onset of esca, a devastating trunk disease / E. Bruez, J. Vallance // Environmental microbiology. – Vol. 22(12). – P. 5189-5206. DOI:10.1111/1462-2920.15180

Vitulo, N. Bark and grape microbiome of Vitis vinifera: influence of geographic patterns and agronomic management on bacterial diversity / N. Vitulo, M. Calgaro // Front. Microbiol. – 2019. – Vol. 9. – P. 1–13. DOI:10.3389/fmicb.2018.03203

Awad, M. Genotype may influence bacterial diversity in bark and bud of Vitis vinifera cultivars grown under the same environment / M. Awad, G. Giannopoulos, P. Mylona // Applied Sciences. – 2020. – Vol. 10. DOI:10.3390/app10238405

Martins, G. Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations / G. Martins, C. Miot-Sertier, A. Mercier // PLoS One. – 2013. – Vol. 8(8). – P. 1–7.

Bekris, F. Grapevine wood microbiome analysis identifies key fungal pathogens and potential interactions with the bacterial community implicated in grapevine trunk disease appearance / F. Bekris // Environmental Microbiome. – 2021. – Vol. 16. – No. 23.

Canfora, L. Vineyard microbiome variations during different fertilisation practices revealed by 16s rRNA gene sequencing / L. Canfora, E. Vendramin, B. Felici //Appl. Soil Ecol. – 2017. – Vol. 125. – P. 71–80.

Stefanini, I. Metagenomic approaches to investigate the contribution of the vineyard environment to the quality of wine fermentation, potentials and difficulties / I. Stefanini // Front. Microbiol. – 2018. – Vol. 9. – P. 991.

Pacifico, D. The role of the endophytic microbiome in the grapevine response to environmental triggers / D. Pacifico // Front. Plant Sci. – 2019. –

Campisano, A. Diversity in endophyte populations reveals functional and taxonomic diversity between wild and domesticated grapevines / A. Campisano // Am. J. Enol. Vitic. – 2014. – Vol. 66. – P. 12–21.

Юрченко, Е.О. К исследованию комплекса микромицетов дикорастущего винограда, произрастающего в пойменном лесу краснодарского края / Е.О. Юрченко, А.А. Лукьянова, И.В. Горбунов // Магарач. Виноградарство и виноделие. – 2021. – №4(118). – С. 377–381.

Singh, P. Assessing the impact of plant genetic diversity in shaping the microbial community structure of Vitis vinifera phyllosphere in the Mediterranean / P. Singh // Front. Life Sci. – 2018. – Vol. 11. – P. 35–46.

Zhang J. Diversity of non-Saccharomyces yeasts of grape berry surfaces from representative Cabernet Sauvignon vineyards in Henan Province, China / J. Zhang, Y. Shang, J. Chen, B. Brunel // FEMS Microbiol. Lett. – 2021. – Vol. 368. DOI: 10.1093/femsle/fnab142

Глушакова, А.М. Массовое выделение анаморфных аскомицетовых дрожжей Candida oleophila из филлосферы растений / А.М. Глушакова // Микробиология. – 2017. – Т. 76. – № 6. – С. 896–901.

Bokulich, N.A. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics / N.A. Bokulich, T.S. Collins, C. Masarweh // mBio. – 2016. – Vol. 7(3): e00631-16.

Faist, H. Crown galls of grapevine (Vitis vinifera) host distinct microbiota / H. Faist // Applied and Environmental Microbiology. – 2016. – Vol. 82(18). DOI:10.1128/AEM.01131-16

Волынчук, Н.Н. Анализ микробиома почек винограда культурного / Н.Н. Волынчук // сборник Международной научно-практической конференции «Современные тенденции науки, инновационные технологии в виноградарстве и виноделии», Ялта, 7 сентября 2022. – С. 15 – 18.

Singh, P. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence data structures / P. Singh // Scientific Reports. – 2019. – Vol. 9. –

Wiegand, S. On the maverick planctomycetes / S. Wiegand, M. Jogler, C. Jogler // FEMS Microbiology Reviews. – 2018. – Vol. 42(6). – P. 739–760.

Santoyo, G. Plant growth-promoting bacterial endophytes / G. Santoyo, G. Moreno-Hagelsieb, C. Orozco-Mosqueda Mdel // Microbiol. Res. – 2016. – Vol. 183. – P. 92–99.

Morrison-Whittle, P. From vineyard to winery: a source map of microbial diversity driving wine fermentation / P. Morrison-Whittle, M.R. Goddard // Environ. Microbiol. – 2018. – Vol. 20. – P. 75–84.

Morrison-Whittle, P. Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems / P.S. Morrison-Whittle, A. Lee, M.R. Goddard // Agric. Ecosyst. Environ. – 2017. – Vol. 246. – P. 306–313.

Niem, J.M. Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic Pseudomonas against grapevine trunk diseases / J.M. Niem, R. Billones-Baaijens, B. Stodart // Frontiers in Microbiology. – 2020. – Vol.11. – P. 477.

Wassermann, B. Plant health and sound vibration: analyzing implications of the microbiome in grape wine leaves / B. Wassermann, L. Korsten // Pathogens. – 2021. – Vol. 10(1). DOI:10.3390/pathogens10010063

Lorenzini, M. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes / M. Lorenzini, M.S Cappello., A. Logrieco // Int. J. Food Microbiol. – 2016. – Vol. 238. – P. 56–62. DOI:10.1016/j.ijfoodmicro.2016.08.039

Prendes, L.P. Water activity and temperature effects on growth and mycotoxin production by Alternaria alternata strains isolated from Malbec wine grapes / L.P. Prendes, V.G. Zachetti, A. Pereyra // J. Appl. Microbiol. – 2017. – Vol. 122(2). – P. 481–492. DOI: 10.1111/jam.13351

Fortes, A.M. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding thedynamics of grape ripening / A.M. Fortes, P. Agudelo-Romero, M.S. Silva // BMC Plant Biol. – 2011. – Vol. 11. – No. 149.

Агеева, Н.М. Видовое многообразие микрофлоры на ягодах винограда / Н.М. Агеева, И.И. Супрун, А.В. Прах // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. – 2015. – №111(07). – C. 1–10. DOI: 10.30679/2219-5335-2021-2-68-272-286

Bokulich, N.J. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate / N.J. Bokulich, H. Thorngate, P. Richardson // Proceedings of the National Academy of Sciences. – 2013. DOI:10.1073/pnas.1317377110

Barata, A. The microbial ecology of wine grape berries / A. Barata, M. Malfeito-Ferreira, V. Loureiro // Int. J. Food Microbiol. – 2012. – Vol. 153. – P. 243–259.

Barata, A. Sour rot-damaged grapes are sources of wine spoilage yeasts / A. Barata, S. Gonzalez, M. Malfeito-Ferreira // FEMS Yeast Res. – 2008. – No. 8. – P. 1008–1017.

Grangeteau, C. Wine microbiology is driven by vineyard and winery anthropogenic factors / C. Grangeteau, C. Roullier-Gall, S. Rousseaux // Microb. Biotechnol. – 2017. –Vol. 10. – P. 354–370.

Barata, A. Influence of sour rotten grapes on the chemical composition and quality of grape must and wine / A. Barata, A. Pais, M. Malfeito-Ferreira // Eur. Food Res. Technol. – 2011. – Vol. 233. – P. 183–184.

Gilbert, J.A. Microbial terroir for wine grapes / J.A. Gilbert // Proc. Natl. Acad. Sci. USA. – 2014. – Vol. 111. – P. 115 – 126. DOI:10.1073/pnas.1320471110

Martins, G. Grape berry bacterial microbiota: impact of the ripening process and the farming system / G. Martins, C. Miot-Sertier, B. Lauga // Int. J. Food Microbiol. – 2012. – Vol. 158. – P. 93–100.

Kioroglou, D. Geographical origin has a greater impact on grape berry fungal community than grape variety and maturation state / D. Kioroglou, E. Kraeva-Deloire, L.M. Schmidtke, A. Mas // Microorganisms. – 2019. – Vol. 7. – P. 669.

Bougreau, M. Yeast species isolated from Texas high plains vineyards and dynamics during spontaneous fermentations of Tempranillo grapes / M. Bougreau // PLoS ONE. – 2019. – Vol. 14.

Copeland, J.K. Seasonal community succession of the phyllosphere microbiome / J.K. Copeland, L.Yuan, M. Layeghifard // Mol. PlantMicrobe Interact. – 2015. – Vol. 28. – P. 274–285.

Kamilari E. Metataxonomic analysis of grape microbiota during wine fermentation reveals the distinction of Cyprus regional terroirs / E. Kamilari, M. Mina, C. Karallis, D. Tsaltas // Front. Microbiol. – 2021. – Vol. 12. DOI:10.3389/fmicb.2021.726483

Gao, F.-K. Mechanisms of fungal endophytes in plant protection against pathogens / F.-K. Gao, C.-C. Dai, X.-Z. Liu // Afr. J. Microbiol. Res. – 2010. – Vol. 4. – P. 1346–1351.

Setati, M. E. The vineyard yeast microbiome, a mixed model microbial map / M. E. Setati, D. Jacobson, U.-C. Andong // PLoS One. – 2012. – Vol. 7.

Liu, Y. Wine microbiome, a dynamic world of microbial interactions / Y. Liu, S. Rousseaux, R. Tourdot-Marechal // Crit. Rev. Food Sci. Nutr. – 2015. –

Martins, G. Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process / G. Martins, J. Vallance, A. Mercier // Int. J. Food Microbiol. – 2014. – Vol. 177. – P. 21–28.

Sun, D. Analysis of microbial community diversity of muscadine grape skins / D. Sun // Food Research International. – 2021. – Vol. 145. –

Capozzi, V. Microbial terroir and food innovation: the case of yeast biodiversity in wine / V. Capozzi, C. Garofalo, M.A. Chiriatti // Microbiol. Res. – 2015. – Vol. 181. – P. 75–83.

Costantini, A. Yeast biodiversity in vineyard during grape ripening: comparison between culture dependent and NGS analysis / A. Costantini, E.Vaudano, L. Pulcini // MDPI. – 2022. – Vol. 10(5). DOI:10.3390/pr10050901

Fleet, G.H. «The yeast ecology of wine grapes», in biodiversity and biotechnology of wine yeasts / G.H. Fleet, C. Prakitchaiwattana, G. Heard // Biology. – 2002. – P. 1–17.

Mezzasalma, V. Geographical and cultivar features differentiate grape microbiota in northern Italy and Spain vineyards / V. Mezzasalma, A. Sandionigi, L. Guzzetti // Front. Microbiol. – 2018. – Vol. 9. – P. 1–14.

Wei, R. Community succession of the grape epidermis microbes of Cabernet Sauvignon (Vitis vinifera L.) from different regions in China during fruit development / R. Wei, Y. Ding// Int. J. Food Microbiol. – 2022. – Vol. 362.

Salvetti, E. Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions / E. Salvetti, S. Campanaro, I. Campedelli // Front. Microbiol. – 2016. – Vol. 7(70). – P. 1–17.

Portillo, M. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain) / M. Portillo // Int. J. Food Microbiol. – 2016. – Vol. 219. – P. 56–63.

Mezzasalma, V. Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production / V. Mezzasalma, A. Sandionigi // PLoS ONE. – Vol. 12(9). DOI:10.1371/journal.pone.0184615

Castrillo, D. Yeast diversity on grapes from Galicia, NW Spain: biogeographical patterns and the influence of the farming system / D. Castrillo, E. Rabuñal, N. Neira // OENO One. – 2019. – Vol. 53. – P. 573–587.

Miura, T. Is microbial terroir related to geographic distance between vineyards? / T. Miura, R. Sanchez // Environmental Microbiology Reports. – Vol. 9(6). – P. 742–749. DOI:10.1111/1758-2229.12589

References

Capozzi V., Garofalo C., Chiriatti M. A. Microbial terroir and food innovation: the case of yeast biodiversity in wine. Microbiol. Res., 2015, vol. 181, pp. 75–83. DOI: 10.1016/j.micres.2015.10.005

Oleshuk E.N., Popov Y.G., Yanchevskaya T.G. Nauchnyye problemy introduktsii i osvoyeniya promyshlennoy tekhnologii vyrashchivaniya vinograda v usloviyakh Belarusi [Scientific problems of the introduction and development of industrial technology for growing grapes in Belarus]. Problemy sokhraneniya biologicheskogo raznoobraziya i ispol'zovaniya biologicheskikh resursov: tez. dokl. 2-y Mezhdunar. konf. [Problems of conservation of biological diversity and the use of biological resources: abstract. report 2nd Intern. conf.]. Minsk, 2012, pp. 482–485. (In Russian)

Oleshuk Ye.N., Popov Y.G. Promyshlennyy vinogradnik na Poles'ye [Industrial vineyard in Polissya]. Khozyain [Owner], 2012, no. 11, pp. 8–9. (In Russian)

Sobolev S.Y. Vyrashchivaniye vinograda v Belarusi: populyarnyye sorta [Growing grapes in Belarus: popular varieties]. Minsk., Ser-Vit, 2010. 64 p. (In Russian)

Pinskiy opornyy punkt po vinogradu i drugim yuzhnym kul'turam [Pinsk stronghold for grapes and other southern crops]. (In Russian). Available at: http://myvinogradnik.ru/pinskij-opornyj-punkt-po-vinogradu-i-drugim-yuzhnym-kulturam (accessed 16.03.2021)

Gde loze vit'sya? [Where does the vine grow?]. (In Russian). Available at: https://www.sb.by/articles/gde-loze-vitsya.html. (accessed 03.04.2022)

Bulgarelli D., Schlaeppi K., Spaepen S. Structure and functions of the bacterial microbiota of plants. Annu Rev. Plant Biol., 2013, vol. 64, pp. 807–838. DOI: 10.1146/annurev-arplant-050312-120106

Compant S., Clement C., Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem., 2010, vol. 42, pp. 669–678. DOI:10.1016/j.soilbio.2009.11.024

Rosenberg E., Zilber-Rosenberg I. Microbes drive evolution of animals and plants: the hologenome concept. mBio., 2016, vol. 7. DOI: 10.1128/ mBio.01395-15

Leveau, J.H.J. and Tech, J.J. (2011). Grapevine microbiomics: bacterial diversity on grape leaves and berries revealed by high-throughput sequence analysis of 16s RRNA amplicons. Acta Hortic., 2011, vol. 905, pp. 31–42. DOI:10.17660/ActaHortic.2011.905.2

Pinto C.D., Pinho S., Sousa M., Pinheiro C. Unravelling the diversity of grapevine microbiome. PLoS ONE, 2014, vol. 9, pp. 1–12. DOI:10.1371/journal.pone.0085622

Belkina D.D. Sostav i znachenie bakterial'nyh soobshchestv v agroekosistemah vinograda [Composition and significance of bacterial communities in grape agroecosystems]. Plodovodstvo i vinogradarstvo Yuga Rossii [Fruit growing and viticulture of the South of Russia], 2021, no 68(2), pp. 272–286. (In Russian). DOI: 10.30679/2219-5335-2021-2-68-272-286

Almario J., Jeena G., Wunder J. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina andits contribution to plant phosphorus nutrition. Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, pp. 9403–9412. DOI:10.1073/pnas.1710455114

Alvarez-Perez J.M., Cobos R., Gonzalez-Garcia S. Use of endophytic and rhizosphere actinobacteria from drapevine Plants to reduce nursery fungal graft infections that lead to young grapevine decline. Applied and Environmental Microbiology, 2017, vol. 83, iss. 24. DOI:10.1128/AEM.01564-17

White R.E. The value of soil knowledge in understanding wine terroir. Front Environ Sci., 2020, no. 8. pp. 1–6. DOI:10.3389/fenvs.2020.00012

Zarraonaindia I., Owens S.M., Weisenhorn P., West K. The soil microbiome influences grapevine-associated microbiota. MBio, 2015, vol. 6, iss. 2, pp. 1–10.

Coince A. Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One, 2014, vol. 9, iss. 6. DOI:10.1371/journal.pone.0100668

Compant S., Kaplan H., Sessitsch A. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol. Ecol., 2008, vol. 63, pp. 84–93. DOI: 10.1111/j.1574-6941.2007.00410.x

Guyonnet J.P., Guillemet M., Dubost A. Plant nutrient resource use strategies shape active rhizosphere microbiota through root exudation. Front Plant Sci., 2018, vol. 9. DOI:10.3389/fpls.2018.01662

Hacquard S., Spaepen S., Garrido-Oter R. Interplay between innate immunity and the plant microbiota. Ann. Rev. Phytopathol, 2017, vol. 55, pp. 565–589. DOI:10.1146/annurev-phyto-080516-035623

Herz K., Dietz S., Gorzolka K. Linking root exudates to functional plant traits. PLoS One, 2018, vol. 13, pp. 1–14. DOI:10.1371/journal.pone.0204128

Pascale A., Proietti S., Pantelides I.S., Stringlis I.A. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci, 2020, vol. 10, pp. 1–23. DOI:10.3389/fpls.2019.01741

Ollat N., Bordenave L., Tandonnet J.P. Grapevine rootstocks: origins and perspectives. Acta Hortic, 2016, vol. 1136, pp. 11–22. DOI:10.17660/ActaHortic.2016.1136.2

Andreolli M., Lampis S., Zapparoli G., Angelini E. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiological Research, 2015, vol. 183. DOI:10.1016/j.micres.2015.11.009

Berendsen R.L., Pieterse C.M., Bakker P.A. The rhizosphere microbiome and plant health. Trends Plant Sci., 2012, vol. 17, pp. 478–486. DOI: 10.1016/j.tplants.2012.04.001

Toju H., Yamamoto S., Tanabe A. S. Network modules and hubs in plant-root fungal biome. J. R. Soc. Interface, 2016, vol.13. DOI: 10.1098/rsif.2015.1097

Berg G., Grube M., Schloter M., Smalla K. Unraveling the plant microbiome: looking back and future perspectives. Front. Microbiol., 2014, vol. 5, iss. 148. DOI:10.3389/fmicb.2014.00148

Coskun D., Britto D.T., Shi W.M., Kronzucker H.J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci., 2017, vol. 22, pp. 661–673. DOI:10.1016/j.tplants.2017.05.004

Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol., 2017, vol. 15, 579–590. DOI: 10.1038/nrmicro.2017.87

Munakata R., Larbat R., Duriot L., Olry A. Polyphenols from plant roots. Recent Adv. Polyphen. Res., 2019, vol. 6, pp. 207–236.

Coskun D., Britto D.T., Shi W.M., Kronzucker H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants, 2017, vol. 3. DOI: 10.1038/nplants.2017.74

Toju H. Factors influencing leaf- and root-associated communities of bacteria and fungi across 33 plant orders in a Grassland. Frontiers in Microbiology, 2019, vol. 10, pp. 1–14. DOI:10.1101/439646

Ghatak A., Chaturvedi P., Bachmann G., Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Front Plant Sci., 2021, vol. 13, iss. 11. DOI:10.3389/fpls.2020.600278

Deyett E., Rolshausen P.E. Endophytic microbial assemblage in grapevine. FEMS Microbiol. Ecol. 2020, vol. 96, no. 5, pp. 1–11. DOI:10.1093/femsec/fiaa053

Zahid M., Javed H. Comparative fungal diversity and dynamics in plant compartments at different developmental stages under root-zone restricted grapevines. BMC Microbiology, vol. 21(1), pp. 2–16. DOI:10.1186/s12866-021-02376-y

Berlanas C., Berbegal M. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Frontiers in Microbiology, 2019, vol. 10. DOI:10.3389/fmicb.2019.01142

Martinez-Diz M.P., Andres-Sodupe M., Bujanda R. Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecol., 2019, vol. 41, pp. 234–44. DOI: 10.1016/j.funeco.2019.07.003

Marasco R., Rolli E., Fusi M., Michoud G. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome, 2018, vol. 6, iss.1. DOI:10.1186/s40168-017-0391-2

Novello G., Gamalero E., Bona E., Boatti L.The rhizosphere bacterial microbiota of Vitis vinifera cv. Pinot Noir in an integrated pest management vineyard. Front. Microbiol., 2017, vol. 8. DOI:10.3389/fmicb.2017.0152

Liu D., Howell K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ. Microbiol., 2021, vol. 23, pp. 1842–1857. DOI:10.1101/2020.05.03.075457

Dries L., Bussotti S. Rootstocks shape their microbiome - bacterial communities in the rhizosphere of different grapevine rootstocks. FDW. 2021.

Samad A., Trognitz F., Compant S., Antonielli L., Sessitsch A. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol., 2017, vol. 19, pp. 1407–1424. DOI:10.1111/1462-2920.13618

Wei Y., Wu Y., Yan Y. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE, 2018. DOI:10.1371/journal.pone.0193097

Cureau N. Year, location, and variety impact on grape-, soil-, and leaf-associated fungal microbiota of Arkansas-Grown table grapes. Microbial ecology, 2021. DOI:10.1007/s00248-021-01698-8

Wright А., Shawkat A. A characterization of a cool climate organic vineyard’s microbiome. Phytobiomes Journal., 2021, vol. 3. DOI:10.1094/PBIOMES-03-21-0019-R

Volynchuk N.N. Rizosfera i rizoplana vinograda kul'turnogo [Rhizosphere and rhizoplane of cultivated grapes]. Nauchnyy potentsial molodezhi – budushchemu Belarusi: materialy XV mezhdunarodnoy molodezhnoy nauchno–prakticheskoy konferentsii [The scientific potential of youth - the future of Belarus: materials of the XV International Youth Scientific and Practical Conference]. Pinsk, 2021, pp. 72–75. (In Russian)

Volynchuk N.N., Zhuk O.N. Mitselial'nyye i nemitselial'nyye griby rizoplany i endosfery korney vinograda kul'turnogo (Vitis vinifera) [Mycelial and non-mycelial fungi of the rhizoplane and endosphere of the roots of cultivated grapes (Vitis vinifera)]. Opyt i perspektivy vyrashchivaniya netraditsionnykh yagodnykh rasteniy na territorii Belarusi i sopredel'nykh stran: materialy Mezhdunarodnogo nauchno-prakticheskogo seminara [Experience and prospects for growing non-traditional berry plants in Belarus and neighboring countries: materials of the International Scientific and Practical Seminar]. Minsk, 2021, pp. 24–29. (In Russian)

Zarraonaindia I., Gilbert J.A. Understanding grapevine-microbiome interactions: implications for viticulture industry. Microb. Cell, 2015, vol. 2, pp. 171–173. DOI:10.15698/mic2015.05.204

Baldan, E., Nigris, S., Populin, F., Zottini, M., Squartini, A., Baldan, B. Identification of culturable bacterial endophyte community isolated from tissues of Vitis vinifera “Glera”. Plant Biosyst, 2014, vol. 148, pp. 508–516. DOI:10.1080/11263504.2014.916364

Hirano S.S. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and Epiphyte. Microbiol. Mol. Biol. Rev., 2000, vol. 64, iss. 3, pp. 624–653. DOI:10.1128/MMBR.64.3.624-653.2000

Mitchell J.I. Sequences, the environment and fungi. Mycologist, 2006, vol. 20, pp. 62–74. DOI: 10.1016/j.mycol.2005.11.004

Jha P., Panwar J., Jha P.N. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int. J. Environ. Sci. and Tec., 2014, vol. 12, iss. 2, pp. 789–802. DOI:10.1007/s13762-014-0515-1

Oburger E., Jones D.L. Sampling root exudates - mission impossible? Rhizosphere, 2018, vol. 6, pp. 116–133. DOI:10.1016/J.RHISPH.2018.06.004

Pieterse C.M., Zamioudis C., Berendsen R.L., Weller D.M. Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol., 2014, vol. 52, pp. 347–375. DOI:10.1146/annurev-phyto-082712-102340

Bona E.N. Metaproteomic characterization of the Vitis vinifera rhizosphere. EMS Microbiology Ecology, 2018. DOI:10.1093/femsec/fiy204

D’Amico F. The rootstock regulates microbiome diversity in root and rhizosphere compartments of Vitis vinifera cultivar Lambrusco. Front. Microbiol., 2018, vol. 9. DOI:10.3389/fmicb.2018.02240

Bruez E., Vallance J. Major changes in grapevine wood microbiota are associated with the onset of esca, a devastating trunk disease. Environ Microbiol., 2020, vol. 22, pp. 5189–206. DOI:10.1111/1462-2920.15180

Vitulo N., Calgaro M. Bark and grape microbiome of Vitis vinifera: influence of geographic patterns and agronomic management on bacterial diversity. Front. Microbiol., 2019, vol. 9. DOI:10.3389/fmicb.2018.03203

Awad M., Giannopoulos G., Mylona P. Genotype may influence bacterial diversity in bark and bud of Vitis vinifera cultivars grown under the same environment. Applied Sciences, 2020, vol. 10. DOI:10.3390/app10238405

Martins G., Lauga B., Miot-Sertier C., Mercier A. Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations. PLoS One, 2013, vol. 8, iss. 8. DOI:10.1371/journal.pone.0073013

Bekris F., Vasileiadis S., Papadopoulou E., Samaras A. Grapevine wood microbiome analysis identifies key fungal pathogens and potential interactions with the bacterial community implicated in grapevine trunk disease appearance. Environmental Microbiome, 2021, vol. 16, no. 23. DOI: 10.1186/s40793-021-00390-1

Canfora L., Vendramin E., Felici B., Tarricone L. Vineyard microbiome variations during different fertilisation practices revealed by 16s rRNA gene sequencing. Appl. Soil Ecol., 2017, vol. 125, pp. 71–80.

Stefanini I., Cavalieri D. Metagenomic approaches to investigate the contribution of the vineyard environment to the quality of wine fermentation, potentials and difficulties. Front. Microbiol., 2018, vol. 9. DOI:10.3389/fmicb.2018.00991

Pacifico D. The role of the endophytic microbiome in the grapevine response to environmental triggers. Front. Plant Sci., 2019, vol. 10. DOI:10.3389/fpls.2019.01256

Campisano A., Puopolo G. Diversity in endophyte populations reveals functional and taxonomic diversity between wild and domesticated grapevines. Am. J. Enol. Vitic., 2014, vol. 66, pp. 12–21. DOI:10.5344/ajev.2014.14046

Yurchenko Y.G., Luk'yanova A.A., Gorbunov I.V. K issledovaniyu kompleksa mikromitsetov dikorastushchego vinograda, proizrastayushchego v poymennom lesu Krasnodarskogo kraya [To the study of the complex of micromycetes of wild grapes growing in the floodplain forest of the Krasnodar Territory]. «Magarach». Vinogradarstvo i vinodeliye ["Magarach". Viticulture and winemaking], 2021, no. 4, pp. 377–381. (In Russian). DOI 10.35547/IM.2021.23.4.012

Singh, P. Assessing the impact of plant genetic diversity in shaping the microbial community structure of Vitis vinifera phyllosphere in the Mediterranean. Front. Life Sci., 2018, vol. 11, pp. 35–46. DOI:10.1080/21553769.2018.1552628

Zhang J., Shang Y., Chen J., Brunel B. Diversity of non-Saccharomyces yeasts of grape berry surfaces from representative Cabernet Sauvignon vineyards in Henan Province, China. FEMS Microbiol. Lett., 2021, vol. 368. DOI: 10.1093/femsle/fnab142.

Glushakova A.M. Massovoye vydeleniye anamorfnykh askomitsetovykh drozhzhey Candida oleophila iz fillosfery rasteniy [Mass isolation of anamorphic ascomycete yeast Candida oleophila from the plant phyllosphere]. Mikrobiologiya [Microbiology], 2017, vol. 76, no. 6, pp. 896–901. (In Russian)

Bokulich N. A., Collins T. S., Masarweh C., Allen G. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. MBio, 2016, Vol. 7, iss. 3. DOI:10.1128/mBio.00631-16

Faist H. Crown galls of grapevine (Vitis vinifera) host distinct microbiota / H. Faist // Applied and Environmental Microbiology, 2016, vol. 82(18). DOI:10.1128/AEM.01131-16

Volynchuk N.N. Analiz mikrobioma pochek vinograda kul'turnogo [Analysis of the microbiome of the buds of cultivated grapes]. Sbornik Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Sovremennyye tendentsii nauki, innovatsionnyye tekhnologii v vinogradarstve i vinodelii [Collection of the international scientific and practical conference "Modern trends in science, innovative technologies in viticulture and winemaking"]. Yalta, 2022, vol. 51, pp. 15–18.

Singh P., Peros J. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence data structures. Scientific Reports, 2019, vol. 9. DOI:10.1038/s41598-019-50839-0

Wiegand S, Jogler M., Jogler C. On the maverick planctomycetes. FEMS Microbiology Reviews, 2018, vol. 42, iss. 6, pp. 739–760. DOI:10.1093/femsre/fuy029

Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda Mdel C. Plant growth-promoting bacterial endophytes. Microbiol. Res., 2016, vol. 183, pp. 92–99. DOI: 10.1016/j.micres.2015.11.008

Morrison-Whittle P., Goddard M. R. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environ. Microbiol., 2018, vol. 20, pp. 75–84. DOI:10.1111/1462-2920.13960

Morrison-Whittle, P. Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems. Agric. Ecosyst. Environ., 2017, vol. 246, pp. 306–313. DOI: 0.1016/j.agee.2017.05.0.

Niem J.M., Billones-Baaijens R., Stodart B., Savocchia S. Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic Pseudomonas against grapevine trunk diseases. Frontiers in Microbiology, 2020, vol. 11. DOI:10.3389/fmicb.2020.00477

Wassermann B. Plant health and sound vibration: analyzing implications of the microbiome in grape wine leaves. Pathogens, 2021, vol. 10(1). DOI:10.3390/pathogens10010063

Lorenzini M., Cappello M.S., Logrieco A. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes. Int. J. Food Microbiol., 2016, vol. 238, pp. 56–62. DOI: 10.1016/j.ijfoodmicro.2016.08.039

Prendes L.P., Zachetti V.G., Pereyra A. Water activity and temperature effects on growth and mycotoxin production by Alternaria alternata strains isolated from Malbec wine grapes. J. Appl. Microbiol., 2017, vol. 122, iss. 2, pp. 481–492. DOI: 10.1111/jam.13351

Fortes A.M., Agudelo-Romero P., Silva M.S. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding thedynamics of grape ripening. BMC Plant Biol., 2011, vol. 11, no. 149.

Ageyeva N.M. Vidovoye mnogoobraziye mikroflory na yagodakh vinograda [Species diversity of microflora on grapes]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Polythematic network electronic scientific journal of the Kuban State Agrarian University], 2015, no. 111, pp. 1–10. (In Russian). DOI: 10.30679/2219-5335-2021-2-68-272-286

Bokulich N.J., Thorngate H., Richardson P. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proceedings of the National Academy of Sciences, 2013. DOI:10.1073/pnas.1317377110

Barata A., Malfeito-Ferreira M., Loureiro V. The microbial ecology of wine grape berries. Int. J. Food Microbiol, 2012, vol. 153, pp. 243–259. DOI: 10.1016/j.ijfoodmicro.2011.11.025

Barata A., Gonzalez S., Malfeito-Ferreira M., Querol A. Sour rot-damaged grapes are sources of wine spoilage yeasts. FEMS Yeast Res, 2008, vol. 8, no. 7, pp. 1008–1017. DOI:10.1111/j.1567-1364.2008.00399.x

Grangeteau C., Roullier-Gall C., Rousseaux S., Gougeon R.D. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microb. Biotechnol., 2017, vol. 10, pp. 354–370. DOI:10.1111/1751-7915.12428

Barata A., Pais A., Malfeito-Ferreira M. Influence of sour rotten grapes on the chemical composition and quality of grape must and wine. Eur. Food Res. Technol, 2011, vol. 233, pp. 183–184. DOI: 10.1007/s00217-011-1505-x

Gilbert J.A. Microbial terroir for wine grapes. Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 115 – 126. DOI:10.1073/pnas.1320471110

Martins G., Miot-Sertier C., Lauga B., Claisse O. Grape berry bacterial microbiota: impact of the ripening process and the farming system. Int. J. Food Microbiol, 2012, vol. 158, pp. 93–100. DOI:10.1016/j.ijfoodmicro.2012.06.013

Kioroglou D., Kraeva-Deloire E., Schmidtke L.M. Geographical origin has a greater impact on grape berry fungal community than grape variety and maturation state. Microorganisms, 2019, vol. 7, vol. 669. DOI:10.3390/microorganisms7120669

Bougreau M., Ascencio K., Bugarel M. Yeast species isolated from Texas high plains vineyards and dynamics during spontaneous fermentations of Tempranillo grapes. PLoS ONE, 2019, vol. 14. DOI:10.1371/journal.pone.0216246

Copeland J.K., Yuan L., Layeghifard M. Seasonal community succession of the phyllosphere microbiome. Mol. PlantMicrobe Interact., 2015,vol. 28, pp. 274–285. DOI: 10.1094/MPMI-10-14-0331-FI

Kamilari E., Mina M., Karallis C., Tsaltas D. Metataxonomic analysis of grape microbiota during wine fermentation reveals the distinction of Cyprus regional terroirs. Front. Microbiol., 2021, vol. 12. DOI:10.3389/fmicb.2021.726483

Gao, F.-K., Dai C.-C., Liu X.-Z. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Microbiol. Res., 2010, vol. 4, pp. 1346–1351.

Setati M. E., Jacobson D., Andong U.-C. The vineyard yeast microbiome, a mixed model microbial map. PLoS One, 2012, vol. 7, iss. 12. DOI:10.1371/journal.pone.0052609

Liu Y., Rousseaux S., Tourdot-Marechal R., Sadoudi M. Wine microbiome, a dynamic world of microbial interactions. Crit. Rev. Food Sci. Nutr., 2015, vol. 57, iss. 4. DOI: 10.1080/10408398.2014.983591

Martins G., Vallance J., Mercier A., Albertin W. Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. Int. J. Food Microbiol., 2014, vol. 177, pp. 21–28. DOI:10.1016/j.ijfoodmicro.2014.02.002

Sun D. Analysis of microbial community diversity of muscadine grape skins // Food Research International, 2021, vol. 145, iss. 2. DOI:10.1016/j.foodres.2021.110417

Capozzi V., Garofalo C. Microbial terroir and food innovation: the case of yeast biodiversity in wine. Microbiol. Res., 2015, vol. 181, p. 75–83.

Costantini A., Vaudano E., Pulcini L. Yeast biodiversity in vineyard during grape ripening: comparison between culture dependent and NGS analysis. MDPI, 2022, vol. 10, iss. 5. DOI:10.3390/pr10050901

Fleet G.H., Prakitchaiwattana C., Heard G. «The yeast ecology of wine grapes», in biodiversity and biotechnology of wine yeasts. Biology, 2002, pp. 1–17.

Mezzasalma V., Sandionigi A., Guzzetti L., Galimberti A. Geographical and cultivar features differentiate grape microbiota in northern Italy and Spain vineyards. Front. Microbiol, 2018, vol. 9. DOI:10.3389/fmicb.2018.00946

Wei R. Community succession of the grape epidermis microbes of Cabernet Sauvignon (Vitis vinifera L.) from different regions in China during fruit development. Int. J. Food Microbiol., 2022, vol. 362. DOI: 10.1016/j.ijfoodmicro.2021.109475

Salvetti E., Campanaro S., Campedelli I., Fracchetti F. et al. Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions. Front. Microbiol., 2016, vol. 7, iss. 70, pp. 1–17. DOI:10.3389/fmicb.2016.00937

Portillo M., Del C., Franquès J., Araque I. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol., 2016, vol. 219, pp. 56–63. DOI: 10.1016/j.ijfoodmicro.2015.12.002

Mezzasalma V. Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. PLoS ONE, vol. 12(9). DOI:10.1371/journal.pone.0184615

Castrillo D., Rabunal E., Neira N., Blanco P. Yeast diversity on grapes from Galicia, NW Spain: biogeographical patterns and the influence of the farming system. OENO One, 2019, vol. 53, pp. 573–587. DOI:10.20870/oeno-one.2019.53.3.2379

Miura T. Is microbial terroir related to geographic distance between vineyards? Environmental Microbiology Reports, vol. 9(6). pp. 742–749. DOI:10.1111/1758-2229.12589

Загрузки

Опубликован

2023-01-16

Выпуск

Раздел

Биологические науки